Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
flujo tensor:: operaciones:: Transmitir a
#include <array_ops.h>
Transmita una matriz para obtener una forma compatible.
Resumen
La radiodifusión es el proceso de crear matrices que tengan formas compatibles para operaciones aritméticas. Dos formas son compatibles si para cada par de dimensiones son iguales o una de ellas es una. Al intentar transmitir un tensor a una forma, comienza con las dimensiones finales y avanza.
Por ejemplo,
x = tf.constant([1, 2, 3]) y = tf.broadcast_to(x, [3, 3]) print(y) tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]], forma=(3, 3), dtype=int32)
En el ejemplo anterior, el tensor de entrada con la forma de [1, 3]
se transmite al tensor de salida con la forma de [3, 3]
.
Al realizar operaciones transmitidas, como multiplicar un tensor por un escalar, la transmisión (generalmente) confiere algún beneficio de tiempo o espacio, ya que el tensor transmitido nunca se materializa.
Sin embargo, broadcast_to
no conlleva dichos beneficios. El tensor recién creado toma la memoria completa de la forma transmitida. (Sin embargo, en un contexto gráfico, broadcast_to
podría fusionarse para la operación posterior y luego optimizarse).
Argumentos:
- alcance: un objeto de alcance
- entrada: Un tensor para transmitir.
- forma: un tensor
int
1-D. La forma de la salida deseada.
Devoluciones:
Atributos públicos
Funciones públicas
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador::tensorflow::Salida
operator::tensorflow::Output() const
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-26 (UTC).
[null,null,["Última actualización: 2025-07-26 (UTC)."],[],[],null,["# tensorflow::ops::BroadcastTo Class Reference\n\ntensorflow::ops::BroadcastTo\n============================\n\n`#include \u003carray_ops.h\u003e`\n\nBroadcast an array for a compatible shape.\n\nSummary\n-------\n\nBroadcasting is the process of making arrays to have compatible shapes for arithmetic operations. Two shapes are compatible if for each dimension pair they are either equal or one of them is one. When trying to broadcast a [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to a shape, it starts with the trailing dimensions, and works its way forward.\n\nFor example,\n\nx = tf.constant(\\[1, 2, 3\\]) y = tf.broadcast_to(x, \\[3, 3\\]) print(y) tf.Tensor( \\[\\[1 2 3\\] \\[1 2 3\\] \\[1 2 3\\]\\], shape=(3, 3), dtype=int32)\n\nIn the above example, the input [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with the shape of `[1, 3]` is broadcasted to output [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape of `[3, 3]`.\n\nWhen doing broadcasted operations such as multiplying a tensor by a scalar, broadcasting (usually) confers some time or space benefit, as the broadcasted tensor is never materialized.\n\nHowever, `broadcast_to` does not carry with it any such benefits. The newly-created tensor takes the full memory of the broadcasted shape. (In a graph context, `broadcast_to` might be fused to subsequent operation and then be optimized away, however.)\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: A [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to broadcast.\n- shape: An 1-D `int`[Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). The shape of the desired output.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BroadcastTo](#classtensorflow_1_1ops_1_1_broadcast_to_1a37bf1f8b63e588def9b3805017209ee6)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_broadcast_to_1abb152ff71cda1cf3af84a7c656faac03) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_broadcast_to_1aaa451e1fc17fe438aa744a2880efca62) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_broadcast_to_1a2c429236acfd549d2252190a63a446f0)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_broadcast_to_1a21be2705c2eba98f1cf7560295561b58)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_broadcast_to_1a43222f4482f5ccb868548380633ce7f5)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BroadcastTo\n\n```gdscript\n BroadcastTo(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]