تدفق التوتر:: العمليات:: ExtractImagePatches
#include <array_ops.h>
قم باستخراج patches
من images
ووضعها في بُعد الإخراج "العمق".
ملخص
الحجج:
- النطاق: كائن النطاق
- الصور: موتر رباعي الأبعاد بالشكل
[batch, in_rows, in_cols, depth]
. - ksizes: حجم النافذة المنزلقة لكل بعد من أبعاد
images
. - الخطوات: إلى أي مدى يوجد مركزا بقعتين متتاليتين في الصور. يجب أن يكون:
[1, stride_rows, stride_cols, 1]
. - المعدلات: يجب أن تكون:
[1, rate_rows, rate_cols, 1]
. هذه هي خطوة الإدخال، التي تحدد مدى وجود عينتين تصحيحيتين متتاليتين في الإدخال. أي ما يعادل استخراج التصحيحات باستخدامpatch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)
، متبوعًا بأخذ عينات فرعية منها مكانيًا بمعاملrates
. وهذا يعادلrate
في التلافيف المتوسعة (ويعرف أيضًا باسم أتروس). - الحشو: نوع خوارزمية الحشو المستخدمة.
العوائد:
-
Output
: موتر رباعي الأبعاد ذو شكل[batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]
يحتوي على تصحيحات للصور بحجمksize_rows x ksize_cols x depth
متجه في بُعد "العمق". لاحظ أنout_rows
وout_cols
هما أبعاد تصحيحات الإخراج.
البنائين والمدمرين | |
---|---|
ExtractImagePatches (const :: tensorflow::Scope & scope, :: tensorflow::Input images, const gtl::ArraySlice< int > & ksizes, const gtl::ArraySlice< int > & strides, const gtl::ArraySlice< int > & rates, StringPiece padding) |
الصفات العامة | |
---|---|
operation | |
patches |
الوظائف العامة | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
الصفات العامة
عملية
Operation operation
بقع
::tensorflow::Output patches
الوظائف العامة
ExtractImagePatches
ExtractImagePatches( const ::tensorflow::Scope & scope, ::tensorflow::Input images, const gtl::ArraySlice< int > & ksizes, const gtl::ArraySlice< int > & strides, const gtl::ArraySlice< int > & rates, StringPiece padding )
العقدة
::tensorflow::Node * node() const
المشغل::tensorflow::الإدخال
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::ExtractImagePatches Class Reference\n\ntensorflow::ops::ExtractImagePatches\n====================================\n\n`#include \u003carray_ops.h\u003e`\n\nExtract `patches` from `images` and put them in the \"depth\" output dimension.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- images: 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, in_rows, in_cols, depth]`.\n- ksizes: The size of the sliding window for each dimension of `images`.\n- strides: How far the centers of two consecutive patches are in the images. Must be: `[1, stride_rows, stride_cols, 1]`.\n- rates: Must be: `[1, rate_rows, rate_cols, 1]`. This is the input stride, specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling them spatially by a factor of `rates`. This is equivalent to `rate` in dilated (a.k.a. Atrous) convolutions.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]` containing image patches with size `ksize_rows x ksize_cols x depth` vectorized in the \"depth\" dimension. Note `out_rows` and `out_cols` are the dimensions of the output patches.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExtractImagePatches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a48a27e59bf001d9d0599c4a4ad3abcf9)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` images, const gtl::ArraySlice\u003c int \u003e & ksizes, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_extract_image_patches_1a20f65de6816816f98d46af224137110d) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [patches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a282b671f1a0d52422cd35c75d6819ee1) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_extract_image_patches_1a812a245b3efe85c0003da911be95b891)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_extract_image_patches_1a3dbc12d46ac43f4e5cb6868030310880)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_extract_image_patches_1a7a11be91c9fd8c6b3c5d48ae30630a18)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### patches\n\n```text\n::tensorflow::Output patches\n``` \n\nPublic functions\n----------------\n\n### ExtractImagePatches\n\n```gdscript\n ExtractImagePatches(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input images,\n const gtl::ArraySlice\u003c int \u003e & ksizes,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]