เทนเซอร์โฟลว์:: ปฏิบัติการ:: SparseApplyโมเมนตัม

#include <training_ops.h>

อัปเดตรายการที่เกี่ยวข้องใน '*var' และ '*accum' ตามรูปแบบโมเมนตัม

สรุป

ตั้งค่า use_nesterov = True หากคุณต้องการใช้โมเมนตัม Nesterov

นั่นคือสำหรับแถวที่เราได้ grad เราอัพเดต var และ accum ดังนี้:

$$accum = accum * momentum + grad$$
$$var -= lr * accum$$

ข้อโต้แย้ง:

  • ขอบเขต: วัตถุ ขอบเขต
  • var: ควรมาจากตัวแปร ()
  • accum: ควรมาจากตัวแปร ()
  • lr: อัตราการเรียนรู้ ต้องเป็นสเกลาร์
  • ผู้สำเร็จการศึกษา: การไล่ระดับสี
  • ดัชนี: เวกเตอร์ของดัชนีในมิติแรกของ var และ accum
  • โมเมนตัม: โมเมนตัม. ต้องเป็นสเกลาร์

แอ็ตทริบิวต์ทางเลือก (ดู Attrs ):

  • use_locking: หากเป็น True การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง
  • use_nesterov: หากเป็น True เทนเซอร์ที่ส่งผ่านไปยังการคำนวณผู้สำเร็จการศึกษาจะเป็น var - lr * โมเมนตัม * สะสม ดังนั้นในท้ายที่สุด var ที่คุณได้รับคือ var - lr * โมเมนตัม * สะสม

ผลตอบแทน:

  • Output : เหมือนกับ "var"

ตัวสร้างและผู้ทำลาย

SparseApplyMomentum (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input momentum)
SparseApplyMomentum (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input momentum, const SparseApplyMomentum::Attrs & attrs)

คุณลักษณะสาธารณะ

operation
out

งานสาธารณะ

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

ฟังก์ชันคงที่สาธารณะ

UseLocking (bool x)
UseNesterov (bool x)

โครงสร้าง

เทนเซอร์โฟลว์ :: ops :: SparseApplyMomentum :: Attrs

ตัวตั้งค่าแอ็ตทริบิวต์ทางเลือกสำหรับ SparseApplyMomentum

คุณลักษณะสาธารณะ

การดำเนินการ

Operation operation

ออก

::tensorflow::Output out

งานสาธารณะ

SparseApplyโมเมนตัม

 SparseApplyMomentum(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input momentum
)

SparseApplyโมเมนตัม

 SparseApplyMomentum(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input momentum,
  const SparseApplyMomentum::Attrs & attrs
)

โหนด

::tensorflow::Node * node() const 

ตัวดำเนินการ::tensorflow::อินพุต

 operator::tensorflow::Input() const 

ตัวดำเนินการ::tensorflow::เอาต์พุต

 operator::tensorflow::Output() const 

ฟังก์ชันคงที่สาธารณะ

ใช้ล็อค

Attrs UseLocking(
  bool x
)

ใช้ Nesterov

Attrs UseNesterov(
  bool x
)