جریان تنسور:: عملیات:: SparseConcat
#include <sparse_ops.h>
فهرستی از SparseTensor
را در امتداد بعد مشخص شده الحاق می کند.
خلاصه
الحاق با توجه به نسخه های متراکم این تانسورهای پراکنده است. فرض بر این است که هر ورودی یک SparseTensor
است که عناصر آن در امتداد افزایش تعداد ابعاد مرتب شده اند.
تمام اشکال ورودی ها باید مطابقت داشته باشند، به جز بعد concat. فهرستهای indices
، values
و shapes
باید طول یکسانی داشته باشند.
شکل خروجی با ورودی ها یکسان است، به جز در امتداد بعد concat، که در آن مجموع اندازه ورودی ها در امتداد آن بعد است.
عناصر خروجی برای حفظ ترتیب مرتب سازی در امتداد افزایش تعداد ابعاد متوسل خواهند شد.
این عملیات در زمان O(M log M)
اجرا می شود، جایی که M
تعداد کل مقادیر غیر خالی در تمام ورودی ها است. این به دلیل نیاز به یک مرتب سازی داخلی به منظور الحاق موثر در یک بعد دلخواه است.
به عنوان مثال، اگر concat_dim = 1
و ورودی ها هستند
sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"
sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"
سپس خروجی خواهد بود
shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"
از نظر گرافیکی این کار معادل انجام دادن است
[ a] concat [ d e ] = [ a d e ]
[b c ] [ ] [b c ]
استدلال ها:
- scope: یک شی Scope
- شاخص ها: 2-D. شاخص های هر ورودی
SparseTensor
. - مقادیر: 1-D. مقادیر غیر خالی هر
SparseTensor
. - اشکال: 1-D. اشکال هر
SparseTensor
. - concat_dim: بعد برای الحاق در امتداد. باید در محدوده [-rank, rank) باشد، که در آن رتبه تعداد ابعاد در هر ورودی
SparseTensor
است.
برمی گرداند:
-
Output
ها: 2-D. شاخص های SparseTensor
به هم پیوسته. -
Output
: 1-D. مقادیر غیر خالی SparseTensor
الحاقی. -
Output
: 1-D. شکل SparseTensor
به هم پیوسته.
صفات عمومی
عملیات
Operation operation
خروجی_شاخص ها
::tensorflow::Output output_indices
خروجی_شکل
::tensorflow::Output output_shape
مقادیر_خروجی
::tensorflow::Output output_values
توابع عمومی
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-27 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-27 بهوقت ساعت هماهنگ جهانی."],[],[],null,["# tensorflow::ops::SparseConcat Class Reference\n\ntensorflow::ops::SparseConcat\n=============================\n\n`#include \u003csparse_ops.h\u003e`\n\nConcatenates a list of `SparseTensor` along the specified dimension.\n\nSummary\n-------\n\nConcatenation is with respect to the dense versions of these sparse tensors. It is assumed that each input is a `SparseTensor` whose elements are ordered along increasing dimension number.\n\n[All](/versions/r2.3/api_docs/cc/class/tensorflow/ops/all#classtensorflow_1_1ops_1_1_all) inputs' shapes must match, except for the concat dimension. The `indices`, `values`, and `shapes` lists must have the same length.\n\nThe output shape is identical to the inputs', except along the concat dimension, where it is the sum of the inputs' sizes along that dimension.\n\nThe output elements will be resorted to preserve the sort order along increasing dimension number.\n\nThis op runs in `O(M log M)` time, where `M` is the total number of non-empty values across all inputs. This is due to the need for an internal sort in order to concatenate efficiently across an arbitrary dimension.\n\nFor example, if `concat_dim = 1` and the inputs are \n\n```scdoc\nsp_inputs[0]: shape = [2, 3]\n[0, 2]: \"a\"\n[1, 0]: \"b\"\n[1, 1]: \"c\"\n\nsp_inputs[1]: shape = [2, 4]\n[0, 1]: \"d\"\n[0, 2]: \"e\"\n```\n\n\u003cbr /\u003e\n\nthen the output will be \n\n```text\nshape = [2, 7]\n[0, 2]: \"a\"\n[0, 4]: \"d\"\n[0, 5]: \"e\"\n[1, 0]: \"b\"\n[1, 1]: \"c\"\n```\n\n\u003cbr /\u003e\n\nGraphically this is equivalent to doing \n\n```ini\n[ a] concat [ d e ] = [ a d e ]\n[b c ] [ ] [b c ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D. Indices of each input `SparseTensor`.\n- values: 1-D. Non-empty values of each `SparseTensor`.\n- shapes: 1-D. Shapes of each `SparseTensor`.\n- concat_dim: Dimension to concatenate along. Must be in range \\[-rank, rank), where rank is the number of dimensions in each input `SparseTensor`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. Indices of the concatenated `SparseTensor`.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. Non-empty values of the concatenated `SparseTensor`.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_shape: 1-D. Shape of the concatenated `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseConcat](#classtensorflow_1_1ops_1_1_sparse_concat_1a50aa275ec5a88496fd4e99f0f1003616)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` indices, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` values, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` shapes, int64 concat_dim)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_concat_1a8db5a398751bcf0e460c5032ae1ab292) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_concat_1a79b9cef174b8488e90f52907d6d64a0f) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_concat_1ae3130991367ac10382b9a6a310b1eff5) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_concat_1a626bd96bc86fb8ecddbd8cbb7a6828cf) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::Output output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseConcat\n\n```gdscript\n SparseConcat(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList indices,\n ::tensorflow::InputList values,\n ::tensorflow::InputList shapes,\n int64 concat_dim\n)\n```"]]