aliran tensor:: operasi:: Sunting Jarak
#include <array_ops.h>
Menghitung Jarak Edit Levenshtein (mungkin dinormalisasi).
Ringkasan
Inputnya adalah urutan panjang variabel yang disediakan oleh SparseTensors (hypothesis_indices, hypothesis_values, hypotesis_shape) dan (truth_indices, truth_values, truth_shape).
Masukannya adalah:
Argumen:
- ruang lingkup: Objek Lingkup
- hipotesis_indeks: Indeks daftar hipotesis SparseTensor. Ini adalah matriks N x R int64.
- nilai_hipotesis: Nilai daftar hipotesis SparseTensor. Ini adalah vektor dengan panjang N.
- hypotesis_shape : Bentuk daftar hipotesis SparseTensor. Ini adalah vektor dengan panjang R.
- truth_indices: Indeks daftar kebenaran SparseTensor. Ini adalah matriks M x R int64.
- truth_values: Nilai daftar kebenaran SparseTensor. Ini adalah vektor dengan panjang M.
- truth_shape: indeks kebenaran, vektor.
Atribut opsional (lihat Attrs
):
- normalisasi: boolean (jika benar, jarak edit dinormalisasi berdasarkan panjang kebenaran).
Outputnya adalah:
Pengembalian:
-
Output
: Tensor float padat dengan rank R - 1.
Sebagai contoh masukan:
// hypothesis represents a 2x1 matrix with variable-length values:
// (0,0) = ["a"]
// (1,0) = ["b"]
hypothesis_indices = [[0, 0, 0],
[1, 0, 0]]
hypothesis_values = ["a", "b"]
hypothesis_shape = [2, 1, 1]
// truth represents a 2x2 matrix with variable-length values:
// (0,0) = []
// (0,1) = ["a"]
// (1,0) = ["b", "c"]
// (1,1) = ["a"]
truth_indices = [[0, 1, 0],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0]]
truth_values = ["a", "b", "c", "a"]
truth_shape = [2, 2, 2]
normalize = true
Outputnya adalah:
// output is a 2x2 matrix with edit distances normalized by truth lengths.
output = [[inf, 1.0], // (0,0): no truth, (0,1): no hypothesis
[0.5, 1.0]] // (1,0): addition, (1,1): no hypothesis
Konstruktor dan Destruktor | |
---|---|
EditDistance (const :: tensorflow::Scope & scope, :: tensorflow::Input hypothesis_indices, :: tensorflow::Input hypothesis_values, :: tensorflow::Input hypothesis_shape, :: tensorflow::Input truth_indices, :: tensorflow::Input truth_values, :: tensorflow::Input truth_shape) | |
EditDistance (const :: tensorflow::Scope & scope, :: tensorflow::Input hypothesis_indices, :: tensorflow::Input hypothesis_values, :: tensorflow::Input hypothesis_shape, :: tensorflow::Input truth_indices, :: tensorflow::Input truth_values, :: tensorflow::Input truth_shape, const EditDistance::Attrs & attrs) |
Fungsi publik | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
Struktur | |
---|---|
tensorflow:: ops:: EditDistance:: Attrs | Penyetel atribut opsional untuk EditDistance . |
Atribut publik
operasi
Operation operation
keluaran
::tensorflow::Output output
Fungsi publik
Sunting Jarak
EditDistance(
const ::tensorflow::Scope & scope,
::tensorflow::Input hypothesis_indices,
::tensorflow::Input hypothesis_values,
::tensorflow::Input hypothesis_shape,
::tensorflow::Input truth_indices,
::tensorflow::Input truth_values,
::tensorflow::Input truth_shape
)
Sunting Jarak
EditDistance(
const ::tensorflow::Scope & scope,
::tensorflow::Input hypothesis_indices,
::tensorflow::Input hypothesis_values,
::tensorflow::Input hypothesis_shape,
::tensorflow::Input truth_indices,
::tensorflow::Input truth_values,
::tensorflow::Input truth_shape,
const EditDistance::Attrs & attrs
)
simpul
::tensorflow::Node * node() const
operator::tensorflow::Masukan
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
Normalisasi
Attrs Normalize(
bool x
)