Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: MaxPool3DGradGrad
#include <nn_ops.h>
Menghitung gradien orde kedua dari fungsi maxpooling.
Ringkasan
Argumen:
- ruang lingkup: Objek Lingkup
- orig_input: Tensor masukan asli.
- orig_output: Tensor keluaran asli.
- grad: Output backprop bentuk
[batch, depth, rows, cols, channels]
. - ksize: Tensor 1-D dengan panjang 5. Ukuran jendela untuk setiap dimensi tensor masukan. Harus memiliki
ksize[0] = ksize[4] = 1
. - langkah: tensor 1-D dengan panjang 5. Langkah jendela geser untuk setiap dimensi
input
. Harus memiliki strides[0] = strides[4] = 1
. - padding: Jenis algoritma padding yang akan digunakan.
Atribut opsional (lihat Attrs
):
- data_format: Format data dari data masukan dan keluaran. Dengan format default "NDHWC", data disimpan dalam urutan: [batch, in_ depth, in_height, in_width, in_channels]. Alternatifnya, formatnya bisa "NCDHW", urutan penyimpanan datanya adalah: [batch, in_channels, in_ depth, in_height, in_width].
Pengembalian:
-
Output
: Gradien gradien menulis input ke max_pool
.
Konstruktor dan Destruktor |
---|
MaxPool3DGradGrad (const :: tensorflow::Scope & scope, :: tensorflow::Input orig_input, :: tensorflow::Input orig_output, :: tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
MaxPool3DGradGrad (const :: tensorflow::Scope & scope, :: tensorflow::Input orig_input, :: tensorflow::Input orig_output, :: tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding, const MaxPool3DGradGrad::Attrs & attrs) |
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
Attrs DataFormat(
StringPiece x
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::MaxPool3DGradGrad Class Reference\n\ntensorflow::ops::MaxPool3DGradGrad\n==================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes second-order gradients of the maxpooling function.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- orig_input: The original input tensor.\n- orig_output: The original output tensor.\n- grad: [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop of shape `[batch, depth, rows, cols, channels]`.\n- ksize: 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/max-pool3-d-grad-grad/attrs#structtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Gradients of gradients w.r.t. the input to `max_pool`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MaxPool3DGradGrad](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1a321b0af89e0d474f1c47e1b56a901da5)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_output, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [MaxPool3DGradGrad](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1a1ab771fc14377bbd003cf6a0eb96c2ad)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_output, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[MaxPool3DGradGrad::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/max-pool3-d-grad-grad/attrs#structtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1a3df083c1b8bff3fe07b796c995dbc1f5) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1aa69fe26b83a309417a0103b09488eafa) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1ac2acbdab5dde8105877b14badb46ccc7)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1ae8e6a0a8acc839a71d2353beb944e2fa)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1a574f83f847b22b01963e9649f6fe60f5)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1a6edaa5d5fd12c37d7a45ad75ea3719ea)`(StringPiece x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/max-pool3-d-grad-grad/attrs#structtensorflow_1_1ops_1_1_max_pool3_d_grad_grad_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::MaxPool3DGradGrad::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/max-pool3-d-grad-grad/attrs) | Optional attribute setters for [MaxPool3DGradGrad](/versions/r1.15/api_docs/cc/class/tensorflow/ops/max-pool3-d-grad-grad#classtensorflow_1_1ops_1_1_max_pool3_d_grad_grad). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MaxPool3DGradGrad\n\n```gdscript\n MaxPool3DGradGrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input orig_input,\n ::tensorflow::Input orig_output,\n ::tensorflow::Input grad,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### MaxPool3DGradGrad\n\n```gdscript\n MaxPool3DGradGrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input orig_input,\n ::tensorflow::Input orig_output,\n ::tensorflow::Input grad,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const MaxPool3DGradGrad::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n```"]]