Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: RandomPoissonV2
#include <random_ops.h>
Menghasilkan nilai acak dari distribusi Poisson yang dijelaskan berdasarkan laju.
Ringkasan
Operasi ini menggunakan dua algoritma, bergantung pada rate. Jika rate >= 10, maka algoritma Hormann digunakan untuk memperoleh sampel melalui transformasi-penolakan. Lihat http://www.sciencedirect.com/science/article/pii/0167668793909974 .
Jika tidak, algoritma Knuth digunakan untuk memperoleh sampel melalui perkalian variabel acak seragam. Lihat Donald E. Knuth (1969). Algoritma Seminumerik. Seni Pemrograman Komputer, Volume 2. Addison Wesley
Argumen:
- ruang lingkup: Objek Lingkup
- bentuk: tensor bilangan bulat 1-D. Bentuk sampel independen diambil dari setiap distribusi yang dijelaskan oleh parameter bentuk yang diberikan dalam laju.
- rate: Tensor yang setiap skalarnya merupakan parameter "rate" yang menggambarkan distribusi poisson terkait.
Atribut opsional (lihat Attrs
):
- seed: Jika salah satu
seed
atau seed2
disetel bukan nol, pembuat angka acak akan diunggulkan berdasarkan seed yang diberikan. Jika tidak, ia akan diunggulkan dengan benih acak. - seed2: Seed kedua untuk menghindari tabrakan seed.
Pengembalian:
-
Output
: Tensor dengan shape + shape(rate)
. Setiap irisan [:, ..., :, i0, i1, ...iN]
berisi sampel yang diambil untuk rate[i0, i1, ...iN]
.
Fungsi statis publik |
---|
Dtype (DataType x) | |
Seed (int64 x) | |
Seed2 (int64 x) | |
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
Tipe D
Attrs Dtype(
DataType x
)
Benih
Attrs Seed(
int64 x
)
Benih2
Attrs Seed2(
int64 x
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::RandomPoissonV2 Class Reference\n\ntensorflow::ops::RandomPoissonV2\n================================\n\n`#include \u003crandom_ops.h\u003e`\n\nOutputs random values from the Poisson distribution(s) described by rate.\n\nSummary\n-------\n\nThis op uses two algorithms, depending on rate. If rate \\\u003e= 10, then the algorithm by Hormann is used to acquire samples via transformation-rejection. See \u003chttp://www.sciencedirect.com/science/article/pii/0167668793909974\u003e.\n\nOtherwise, Knuth's algorithm is used to acquire samples via multiplying uniform random variables. See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer Programming, Volume 2. Addison Wesley\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- shape: 1-D integer tensor. Shape of independent samples to draw from each distribution described by the shape parameters given in rate.\n- rate: A tensor in which each scalar is a \"rate\" parameter describing the associated poisson distribution.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-poisson-v2/attrs#structtensorflow_1_1ops_1_1_random_poisson_v2_1_1_attrs)):\n\n- seed: If either `seed` or `seed2` are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: A second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A tensor with shape `shape + shape(rate)`. Each slice `[:, ..., :, i0, i1, ...iN]` contains the samples drawn for `rate[i0, i1, ...iN]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [RandomPoissonV2](#classtensorflow_1_1ops_1_1_random_poisson_v2_1ac6781b746b5d655d44cf7298d0ec0e8d)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rate)` ||\n| [RandomPoissonV2](#classtensorflow_1_1ops_1_1_random_poisson_v2_1affe491853f03c22d0d69fe155380690d)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rate, const `[RandomPoissonV2::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-poisson-v2/attrs#structtensorflow_1_1ops_1_1_random_poisson_v2_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_random_poisson_v2_1a8a6d22a45ef402122008fd37ae60584a) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_random_poisson_v2_1aacc4e0f70e7215919fd2ed050cc778ec) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_random_poisson_v2_1a2c4c1c5791ce65536c0711c345c5104f)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_random_poisson_v2_1a680111c81759da8f485b7c57830a97c8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_random_poisson_v2_1ab0e8e0cee5576ad5d628eb26db934fc6)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| [Dtype](#classtensorflow_1_1ops_1_1_random_poisson_v2_1a16ea2843b7cb14092e392a1634d5f9d3)`(DataType x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-poisson-v2/attrs#structtensorflow_1_1ops_1_1_random_poisson_v2_1_1_attrs) |\n| [Seed](#classtensorflow_1_1ops_1_1_random_poisson_v2_1a4923276f993adff27a39549f725e140c)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-poisson-v2/attrs#structtensorflow_1_1ops_1_1_random_poisson_v2_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_random_poisson_v2_1a3db3d3b1dcf6fd61014a43d46719c992)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-poisson-v2/attrs#structtensorflow_1_1ops_1_1_random_poisson_v2_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::RandomPoissonV2::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-poisson-v2/attrs) | Optional attribute setters for [RandomPoissonV2](/versions/r1.15/api_docs/cc/class/tensorflow/ops/random-poisson-v2#classtensorflow_1_1ops_1_1_random_poisson_v2). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### RandomPoissonV2\n\n```gdscript\n RandomPoissonV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input rate\n)\n``` \n\n### RandomPoissonV2\n\n```gdscript\n RandomPoissonV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input rate,\n const RandomPoissonV2::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Dtype\n\n```carbon\nAttrs Dtype(\n DataType x\n)\n``` \n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]