tensorflow:: אופס:: SparseSegmentSum
#include <math_ops.h>
מחשב את הסכום לאורך מקטעים דלילים של טנזור.
תַקצִיר
קרא את הקטע על פילוח להסבר על הפלחים.
כמו SegmentSum
, אבל segment_ids
יכול לקבל דירוג נמוך מהמאפיין הראשון של data
, בחירה בקבוצת משנה של מאפיין 0, שצוין על ידי indices
.
לְדוּגמָה:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
# Select two rows, one segment. tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0])) # => [[0 0 0 0]]
# Select two rows, two segment. tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1])) # => [[ 1 2 3 4] # [-1 -2 -3 -4]]
# Select all rows, two segments. tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1])) # => [[0 0 0 0] # [5 6 7 8]]
# Which is equivalent to: tf.segment_sum(c, tf.constant([0, 0, 1]))
טיעונים:
- scope: אובייקט Scope
- מדדים: טנזור 1-D. בעל דירוג זהה לזה של
segment_ids
. - segment_ids: טנזור 1-D. יש למיין את הערכים וניתן לחזור עליהם.
החזרות:
-
Output
: בעל צורה זהה לנתונים, למעט ממד 0 שיש לו גודלk
, מספר המקטעים.
בנאים והורסים | |
---|---|
SparseSegmentSum (const :: tensorflow::Scope & scope, :: tensorflow::Input data, :: tensorflow::Input indices, :: tensorflow::Input segment_ids) |
תכונות ציבוריות | |
---|---|
operation | |
output |
תפקידים ציבוריים | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
תכונות ציבוריות
מִבצָע
Operation operation
תְפוּקָה
::tensorflow::Output output
תפקידים ציבוריים
SparseSegmentSum
SparseSegmentSum( const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input indices, ::tensorflow::Input segment_ids )
צוֹמֶת
::tensorflow::Node * node() const
מפעיל::tensorflow::קלט
operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[],[],null,["# tensorflow::ops::SparseSegmentSum Class Reference\n\ntensorflow::ops::SparseSegmentSum\n=================================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes the sum along sparse segments of a tensor.\n\nSummary\n-------\n\nRead [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) for an explanation of segments.\n\nLike [SegmentSum](/versions/r1.15/api_docs/cc/class/tensorflow/ops/segment-sum#classtensorflow_1_1ops_1_1_segment_sum), but `segment_ids` can have rank less than `data`'s first dimension, selecting a subset of dimension 0, specified by `indices`.\n\nFor example:\n\n\n```gdscript\nc = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Select two rows, one segment.\ntf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))\n# =\u003e [[0 0 0 0]]\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Select two rows, two segment.\ntf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1]))\n# =\u003e [[ 1 2 3 4]\n# [-1 -2 -3 -4]]\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Select all rows, two segments.\ntf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1]))\n# =\u003e [[0 0 0 0]\n# [5 6 7 8]]\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Which is equivalent to:\ntf.segment_sum(c, tf.constant([0, 0, 1]))\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: A 1-D tensor. Has same rank as `segment_ids`.\n- segment_ids: A 1-D tensor. Values should be sorted and can be repeated.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has same shape as data, except for dimension 0 which has size `k`, the number of segments.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSegmentSum](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a02259862f31344aafc95082e08aa9aab)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` segment_ids)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1ad649884f20027c1aad55e81c08e7957b) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a40540c212fd500b0d52073ad1fc9d0c8) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a51e3e189f4da0718eca9673f4245f2b2)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a61710c54c59674e886a27a1025c266ba)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1ad6961f104657b05da798100d4ac7f68b)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSegmentSum\n\n```gdscript\n SparseSegmentSum(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input data,\n ::tensorflow::Input indices,\n ::tensorflow::Input segment_ids\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]