تدفق التوتر:: العمليات:: SparsSoftmax
#include <sparse_ops.h>
يطبق softmax على ND SparseTensor
المُجمَّع.
ملخص
تمثل المدخلات ND SparseTensor ذو الشكل المنطقي [..., B, C]
(حيث N >= 2
)، وبمؤشرات مرتبة بالترتيب المعجمي المتعارف عليه.
هذه العملية تعادل تطبيق الدالة tf.nn.softmax()
العادية على كل مصفوفة فرعية منطقية ذات شكل [B, C]
، ولكن مع ملاحظة عدم مشاركة العناصر الصفرية ضمنيًا . على وجه التحديد، الخوارزمية تعادل ما يلي:
(1) يطبق tf.nn.softmax()
على عرض مكثف لكل مصفوفة فرعية أعمق ذات الشكل [B, C]
، على طول بُعد الحجم C؛ (2) إخفاء المواقع الأصلية ذات الصفر الضمني؛ (3) إعادة تطبيع العناصر المتبقية.
ومن ثم، فإن نتيجة SparseTensor
لها نفس المؤشرات والشكل غير الصفري تمامًا.
الحجج:
- النطاق: كائن النطاق
- sp_indices: 2-D. مصفوفة
NNZ x R
مع مؤشرات القيم غير الفارغة في SparseTensor، بالترتيب القانوني. - sp_values: 1-د. قيم
NNZ
غير الفارغة المقابلة لـ sp_indices
. - sp_shape: 1-د. شكل الإدخال SparseTensor.
العوائد:
-
Output
: 1-د. قيم NNZ
للنتيجة SparseTensor
.
الصفات العامة
عملية
Operation operation
الإخراج
::tensorflow::Output output
الوظائف العامة
SparsSoftmax
SparseSoftmax(
const ::tensorflow::Scope & scope,
::tensorflow::Input sp_indices,
::tensorflow::Input sp_values,
::tensorflow::Input sp_shape
)
العقدة
::tensorflow::Node * node() const
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::SparseSoftmax Class Reference\n\ntensorflow::ops::SparseSoftmax\n==============================\n\n`#include \u003csparse_ops.h\u003e`\n\nApplies softmax to a batched N-D `SparseTensor`.\n\nSummary\n-------\n\nThe inputs represent an N-D SparseTensor with logical shape `[..., B, C]` (where `N \u003e= 2`), and with indices sorted in the canonical lexicographic order.\n\nThis op is equivalent to applying the normal `tf.nn.softmax()` to each innermost logical submatrix with shape `[B, C]`, but with the catch that *the implicitly zero elements do not participate*. Specifically, the algorithm is equivalent to the following:\n\n(1) Applies `tf.nn.softmax()` to a densified view of each innermost submatrix with shape `[B, C]`, along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.\n\nHence, the `SparseTensor` result has exactly the same non-zero indices and shape.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- sp_indices: 2-D. `NNZ x R` matrix with the indices of non-empty values in a SparseTensor, in canonical ordering.\n- sp_values: 1-D. `NNZ` non-empty values corresponding to `sp_indices`.\n- sp_shape: 1-D. Shape of the input SparseTensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1-D. The `NNZ` values for the result `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSoftmax](#classtensorflow_1_1ops_1_1_sparse_softmax_1a64ec9c22eb2f8d50797cfb39eb94009d)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_values, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_shape)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_softmax_1ad2dc43b15de20c26df875d2e2f5e9191) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_softmax_1a94b1fda8269b6888396b9c165fdd28b1) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_softmax_1aabb6b649a7d5f3c8a9db2dea2c44ef1a)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_softmax_1af6f0269e4c290ac6b8234ba881dafe13)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_softmax_1a1fccadd0a530764ea2d1691045ebf2a5)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSoftmax\n\n```gdscript\n SparseSoftmax(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input sp_indices,\n ::tensorflow::Input sp_values,\n ::tensorflow::Input sp_shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]