רפידות_מפורש
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}
use_cudnn_on_gpu_
bool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true
תפקידים ציבוריים
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(
StringPiece x
)
ציין את פורמט הנתונים של נתוני הקלט והפלט.
עם פורמט ברירת המחדל "NHWC", הנתונים מאוחסנים בסדר של: [אצווה, גובה, רוחב, ערוצים]. לחלופין, הפורמט יכול להיות "NCHW", סדר אחסון הנתונים של: [אצווה, ערוצים, גובה, רוחב].
ברירת המחדל היא "NHWC"
הרחבות
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(
const gtl::ArraySlice< int > & x
)
טנסור 1-D באורך 4.
מקדם ההתרחבות עבור כל מימד של input
. אם הוגדר כ-k > 1, יהיו תאים שדילגו על k-1 בין כל רכיב מסנן בממד זה. סדר הממדים נקבע לפי הערך של data_format
, ראה לעיל לפרטים. הרחבות במידות האצווה והעומק חייבות להיות 1.
ברירת המחדל היא [1, 1, 1, 1]
ריפודים מפורשים
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(
const gtl::ArraySlice< int > & x
)
אם padding
הוא "EXPLICIT"
, רשימת סכומי הריפוד המפורשים.
עבור הממד ה-ith, כמות הריפוד שהוכנסה לפני ואחרי הממד היא explicit_paddings[2 * i]
ו- explicit_paddings[2 * i + 1]
, בהתאמה. אם padding
אינו "EXPLICIT"
, explicit_paddings
חייב להיות ריק.
ברירת המחדל היא []
השתמש בCudnnOnGpu
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(
bool x
)
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[],[],null,["# tensorflow::ops::Conv2D::Attrs Struct Reference\n\ntensorflow::ops::Conv2D::Attrs\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [Conv2D](/versions/r1.15/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d).\n\nSummary\n-------\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------------------------|--------------------------|\n| [data_format_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a826b92a551e53c7d7e3f8990dbbdc328)` = \"NHWC\"` | `StringPiece` |\n| [dilations_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a38cfe8f5a9fd31568b79caff3d5db53f)` = Default_dilations()` | `gtl::ArraySlice\u003c int \u003e` |\n| [explicit_paddings_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1af6a0a48d47098676589b0c23d6615b73)` = {}` | `gtl::ArraySlice\u003c int \u003e` |\n| [use_cudnn_on_gpu_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1ac0181cd1c99e758fff22f356f9c51f12)` = true` | `bool` |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1abafbedb30c29ed091ff37895bd8b6c6a)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Specify the data format of the input and output data. |\n| [Dilations](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a16869b39ea0a373acb40566ed4235eb1)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) 1-D tensor of length 4. |\n| [ExplicitPaddings](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a69865f8fd6ea1e16ccc3e4b794ed3b56)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. |\n| [UseCudnnOnGpu](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a6fb079456a188df93e329f61671ff674)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Defaults to true. |\n\nPublic attributes\n-----------------\n\n### data_format_\n\n```scdoc\nStringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = \"NHWC\"\n``` \n\n### dilations_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()\n``` \n\n### explicit_paddings_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}\n``` \n\n### use_cudnn_on_gpu_\n\n```scdoc\nbool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true\n``` \n\nPublic functions\n----------------\n\n### DataFormat\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(\n StringPiece x\n)\n``` \nSpecify the data format of the input and output data.\n\nWith the default format \"NHWC\", the data is stored in the order of: \\[batch, height, width, channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, channels, height, width\\].\n\nDefaults to \"NHWC\" \n\n### Dilations\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n1-D tensor of length 4.\n\nThe dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\nDefaults to \\[1, 1, 1, 1\\] \n\n### ExplicitPaddings\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \nIf `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts.\n\nFor the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n\nDefaults to \\[\\] \n\n### UseCudnnOnGpu\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(\n bool x\n)\n``` \nDefaults to true."]]