Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: FraksionalMaxPool:: Attr
#include <nn_ops.h>
Penyetel atribut opsional untuk FractionalMaxPool .
Ringkasan
Fungsi publik |
---|
Deterministic (bool x) | Jika diatur ke True, wilayah pengumpulan tetap akan digunakan saat melakukan iterasi pada node FractionalMaxPool dalam grafik komputasi. |
Overlapping (bool x) | Jika disetel ke True, artinya saat menggabungkan, nilai pada batas sel gabungan yang berdekatan digunakan oleh kedua sel. |
PseudoRandom (bool x) | Jika diatur ke True, menghasilkan urutan pengumpulan secara acak semu, jika tidak, secara acak. |
Seed (int64 x) | Jika salah satu seed atau seed2 disetel bukan nol, pembuat nomor acak akan diunggulkan oleh seed yang diberikan. |
Seed2 (int64 x) | Benih kedua untuk menghindari benturan benih. |
Atribut publik
deterministik_
bool tensorflow::ops::FractionalMaxPool::Attrs::deterministic_ = false
tumpang tindih_
bool tensorflow::ops::FractionalMaxPool::Attrs::overlapping_ = false
semu_acak_
bool tensorflow::ops::FractionalMaxPool::Attrs::pseudo_random_ = false
benih2_
int64 tensorflow::ops::FractionalMaxPool::Attrs::seed2_ = 0
benih_
int64 tensorflow::ops::FractionalMaxPool::Attrs::seed_ = 0
Fungsi publik
deterministik
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Deterministic(
bool x
)
Jika diatur ke True, wilayah pengumpulan tetap akan digunakan saat melakukan iterasi pada node FractionalMaxPool dalam grafik komputasi.
Terutama digunakan dalam pengujian unit untuk membuat FractionalMaxPool bersifat deterministik.
Defaultnya salah
Tumpang tindih
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Overlapping(
bool x
)
Jika disetel ke True, artinya saat menggabungkan, nilai pada batas sel gabungan yang berdekatan digunakan oleh kedua sel.
Misalnya:
index 0 1 2 3 4
value 20 5 16 3 7
Jika urutan pengumpulannya adalah [0, 2, 4], maka 16, pada indeks 2 akan digunakan dua kali. Hasilnya adalah [20, 16] untuk pengumpulan maksimal pecahan.
Defaultnya salah
PseudoAcak
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::PseudoRandom(
bool x
)
Jika diatur ke True, menghasilkan urutan pengumpulan secara acak semu, jika tidak, secara acak.
Periksa kertas Benjamin Graham, Fractional Max-Pooling untuk mengetahui perbedaan antara pseudorandom dan acak.
Defaultnya salah
Benih
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Seed(
int64 x
)
Jika salah satu seed atau seed2 disetel bukan nol, pembuat nomor acak akan diunggulkan oleh seed yang diberikan.
Jika tidak, ia akan diunggulkan dengan benih acak.
Defaultnya adalah 0
Benih2
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Seed2(
int64 x
)
Benih kedua untuk menghindari benturan benih.
Defaultnya adalah 0
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::FractionalMaxPool::Attrs Struct Reference\n\ntensorflow::ops::FractionalMaxPool::Attrs\n=========================================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [FractionalMaxPool](/versions/r1.15/api_docs/cc/class/tensorflow/ops/fractional-max-pool#classtensorflow_1_1ops_1_1_fractional_max_pool).\n\nSummary\n-------\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------------------------|---------|\n| [deterministic_](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1aafd4ee41920c87adbef0c771e0e4aba4)` = false` | `bool` |\n| [overlapping_](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a6b8769b5907abc5c5cee931232163a05)` = false` | `bool` |\n| [pseudo_random_](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a6c151417d34e214907edbe5759f54558)` = false` | `bool` |\n| [seed2_](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1aefa7cfbd921aed44c3aa965112aae471)` = 0` | `int64` |\n| [seed_](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a16a5faf4dbc78aa4273a0b4bd1b6bb16)` = 0` | `int64` |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Deterministic](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a9706cde32d80300611dd0f402e11c260)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/fractional-max-pool/attrs#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs) When set to True, a fixed pooling region will be used when iterating over a [FractionalMaxPool](/versions/r1.15/api_docs/cc/class/tensorflow/ops/fractional-max-pool#classtensorflow_1_1ops_1_1_fractional_max_pool) node in the computation graph. |\n| [Overlapping](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a88e7b77529a3eaad0c669ce58de7c8d6)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/fractional-max-pool/attrs#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs) When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. |\n| [PseudoRandom](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a79febe1b4fc14f85af705bf34afcb0cb)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/fractional-max-pool/attrs#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs) When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion. |\n| [Seed](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1a2ddc35d0c34cc172bddeb5d1fe3efb47)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/fractional-max-pool/attrs#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs) If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. |\n| [Seed2](#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs_1ac3ab59fffb91f5171c0b93e5867dda8c)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/fractional-max-pool/attrs#structtensorflow_1_1ops_1_1_fractional_max_pool_1_1_attrs) An second seed to avoid seed collision. |\n\nPublic attributes\n-----------------\n\n### deterministic_\n\n```scdoc\nbool tensorflow::ops::FractionalMaxPool::Attrs::deterministic_ = false\n``` \n\n### overlapping_\n\n```scdoc\nbool tensorflow::ops::FractionalMaxPool::Attrs::overlapping_ = false\n``` \n\n### pseudo_random_\n\n```scdoc\nbool tensorflow::ops::FractionalMaxPool::Attrs::pseudo_random_ = false\n``` \n\n### seed2_\n\n```scdoc\nint64 tensorflow::ops::FractionalMaxPool::Attrs::seed2_ = 0\n``` \n\n### seed_\n\n```scdoc\nint64 tensorflow::ops::FractionalMaxPool::Attrs::seed_ = 0\n``` \n\nPublic functions\n----------------\n\n### Deterministic\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Deterministic(\n bool x\n)\n``` \nWhen set to True, a fixed pooling region will be used when iterating over a [FractionalMaxPool](/versions/r1.15/api_docs/cc/class/tensorflow/ops/fractional-max-pool#classtensorflow_1_1ops_1_1_fractional_max_pool) node in the computation graph.\n\nMainly used in unit test to make [FractionalMaxPool](/versions/r1.15/api_docs/cc/class/tensorflow/ops/fractional-max-pool#classtensorflow_1_1ops_1_1_fractional_max_pool) deterministic.\n\nDefaults to false \n\n### Overlapping\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Overlapping(\n bool x\n)\n``` \nWhen set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells.\n\nFor example:\n\n\n`index 0 1 2 3 4`\n\n\n`value 20 5 16 3 7`\n\nIf the pooling sequence is \\[0, 2, 4\\], then 16, at index 2 will be used twice. The result would be \\[20, 16\\] for fractional max pooling.\n\nDefaults to false \n\n### PseudoRandom\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::PseudoRandom(\n bool x\n)\n``` \nWhen set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion.\n\nCheck paper [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for difference between pseudorandom and random.\n\nDefaults to false \n\n### Seed\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Seed(\n int64 x\n)\n``` \nIf either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed.\n\nOtherwise, it is seeded by a random seed.\n\nDefaults to 0 \n\n### Seed2\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Seed2(\n int64 x\n)\n``` \nAn second seed to avoid seed collision.\n\nDefaults to 0"]]