컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 전환3D
#include <nn_ops.h>
5차원 input
및 filter
텐서가 주어지면 3차원 컨볼루션을 계산합니다.
요약
신호 처리에서 상호 상관은 두 파형 중 하나에 적용된 시간 지연의 함수로서 두 파형의 유사성을 측정하는 것입니다. 이는 슬라이딩 내적(sliding dot product) 또는 슬라이딩 내적(sliding inner-product)이라고도 합니다.
Conv3D 는 상호 상관 형태를 구현합니다.
인수:
- 범위: 범위 개체
- 입력: 모양
[batch, in_depth, in_height, in_width, in_channels]
. - 필터: 모양
[filter_depth, filter_height, filter_width, in_channels, out_channels]
. in_channels
input
과 filter
사이에서 일치해야 합니다. - strides: 길이가 5인 1차원 텐서.
input
의 각 차원에 대한 슬라이딩 윈도우의 보폭입니다. strides[0] = strides[4] = 1
이어야 합니다. - padding: 사용할 패딩 알고리즘 유형입니다.
선택적 속성( Attrs
참조):
- data_format: 입력 및 출력 데이터의 데이터 형식입니다. 기본 형식 "NDHWC"를 사용하면 데이터가 [batch, in_length, in_height, in_width, in_channels] 순서로 저장됩니다. 또는 형식이 "NCDHW"일 수 있으며 데이터 저장 순서는 [batch, in_channels, in_length, in_height, in_width]입니다.
- 팽창: 길이가 5인 1차원 텐서.
input
의 각 차원에 대한 팽창 인자입니다. k > 1로 설정되면 해당 차원의 각 필터 요소 사이에 k-1개의 건너뛴 셀이 있게 됩니다. 차원 순서는 data_format
값에 따라 결정됩니다. 자세한 내용은 위를 참조하세요. 배치 차원과 깊이 차원의 팽창은 1이어야 합니다.
보고:
공개 속성
공공 기능
마디
::tensorflow::Node * node() const
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
공개 정적 함수
Attrs DataFormat(
StringPiece x
)
팽창
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-25(UTC)
[null,null,["최종 업데이트: 2025-07-25(UTC)"],[],[],null,["# tensorflow::ops::Conv3D Class Reference\n\ntensorflow::ops::Conv3D\n=======================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes a 3-D convolution given 5-D `input` and `filter` tensors.\n\nSummary\n-------\n\nIn signal processing, cross-correlation is a measure of similarity of two waveforms as a function of a time-lag applied to one of them. This is also known as a sliding dot product or sliding inner-product.\n\nOur [Conv3D](/versions/r2.0/api_docs/cc/class/tensorflow/ops/conv3-d#classtensorflow_1_1ops_1_1_conv3_d) implements a form of cross-correlation.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Shape `[batch, in_depth, in_height, in_width, in_channels]`.\n- filter: Shape `[filter_depth, filter_height, filter_width, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n- dilations: 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv3D](#classtensorflow_1_1ops_1_1_conv3_d_1aef63039997c4f9586d2b8627e3cf5c5a)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv3D](#classtensorflow_1_1ops_1_1_conv3_d_1abb396c1cb8bf48f57ad11862ac7406ad)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv3D::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv3_d_1a34a87b1c84b82ab0a1dec637ee277ced) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv3_d_1a426b9a63272f1905184fdfd1b78ba33a) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv3_d_1a33ab1a0f2fa69089a8f835175d1dc732)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv3_d_1a418b91ef5b6437901248965d572533e5)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv3_d_1abebfb46d5b9c472aebb4f25ad6d2eeb6)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv3_d_1a148ca9c798353ee9073c60f57e45a41f)`(StringPiece x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv3_d_1a90d138624ebc69f365e225d25ece6e2a)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv3D::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs) | Optional attribute setters for [Conv3D](/versions/r2.0/api_docs/cc/class/tensorflow/ops/conv3-d#classtensorflow_1_1ops_1_1_conv3_d). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv3D\n\n```gdscript\n Conv3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv3D\n\n```gdscript\n Conv3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv3D::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n```"]]