Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: AvgPool3DGrad
#include <nn_ops.h>
Calcola i gradienti della funzione di pooling media.
Riepilogo
Argomenti:
- scope: un oggetto Scope
- orig_input_shape: le dimensioni di input originali.
- grad: backprop di output della forma
[batch, depth, rows, cols, channels]
. - ksize: tensore 1-D di lunghezza 5. La dimensione della finestra per ciascuna dimensione del tensore di input. Deve avere
ksize[0] = ksize[4] = 1
. - passi: tensore 1-D di lunghezza 5. Il passo della finestra scorrevole per ogni dimensione di
input
. Deve avere strides[0] = strides[4] = 1
. - riempimento: il tipo di algoritmo di riempimento da utilizzare.
Attributi facoltativi (vedi Attrs
):
- data_format: il formato dei dati di input e output. Con il formato predefinito "NDHWC", i dati vengono archiviati nell'ordine di: [batch, in_profondità, in_altezza, in_larghezza, in_canali]. In alternativa, il formato potrebbe essere "NCDHW", l'ordine di archiviazione dei dati è: [batch, in_channels, in_ Depth, in_height, in_width].
Resi:
-
Output
: il supporto per l'input.
Costruttori e distruttori |
---|
AvgPool3DGrad (const :: tensorflow::Scope & scope, :: tensorflow::Input orig_input_shape, :: tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
AvgPool3DGrad (const :: tensorflow::Scope & scope, :: tensorflow::Input orig_input_shape, :: tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding, const AvgPool3DGrad::Attrs & attrs) |
Funzioni pubbliche statiche |
---|
DataFormat (StringPiece x) | |
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Funzioni pubbliche statiche
Attrs DataFormat(
StringPiece x
)
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::AvgPool3DGrad Class Reference\n\ntensorflow::ops::AvgPool3DGrad\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes gradients of average pooling function.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- orig_input_shape: The original input dimensions.\n- grad: [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop of shape `[batch, depth, rows, cols, channels]`.\n- ksize: 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_grad_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The backprop for input.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [AvgPool3DGrad](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1ac294eebcd4d868dfa68e6a5f7d4c5ea9)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_input_shape, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [AvgPool3DGrad](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a8362b0628d56d49ee76c24faaed842f9)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_input_shape, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[AvgPool3DGrad::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_grad_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1ac7d2ea5c42f4949a936e71f6debf81be) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a9709fb2d31ca099ef81e317ecef40df8) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a30c25a58bfaad694e981cf0bbf407254)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a4738d18b18c18a46d9f6d9c262df86a2)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1ac991ec111bedce628daadef30690cd18)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1aa9e0fbc35b1b72dd2e277ff5db79ca99)`(StringPiece x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_grad_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::AvgPool3DGrad::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs) | Optional attribute setters for [AvgPool3DGrad](/versions/r2.2/api_docs/cc/class/tensorflow/ops/avg-pool3-d-grad#classtensorflow_1_1ops_1_1_avg_pool3_d_grad). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### AvgPool3DGrad\n\n```gdscript\n AvgPool3DGrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input orig_input_shape,\n ::tensorflow::Input grad,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### AvgPool3DGrad\n\n```gdscript\n AvgPool3DGrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input orig_input_shape,\n ::tensorflow::Input grad,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const AvgPool3DGrad::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n```"]]