Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
#include <nn_ops.h>
Tính toán độ dốc của độ giãn nở 2-D hình thái đối với đầu vào.
Bản tóm tắt
Lập luận:
- phạm vi: Một đối tượng Phạm vi
- đầu vào: 4-D với hình dạng
[batch, in_height, in_width, depth]
. - bộ lọc: 3-D với hình dạng
[filter_height, filter_width, depth]
. - out_backprop: 4-D với hình dạng
[batch, out_height, out_width, depth]
. - bước tiến: 1-D có chiều dài 4. Bước tiến của cửa sổ trượt cho từng chiều của tensor đầu vào. Phải là:
[1, stride_height, stride_width, 1]
. - tỷ lệ: 1-D có chiều dài 4. Bước đầu vào cho sự giãn nở hình thái động mạch. Phải là:
[1, rate_height, rate_width, 1]
. - phần đệm: Loại thuật toán đệm sẽ sử dụng.
Trả về:
-
Output
: 4-D với hình dạng [batch, in_height, in_width, depth]
.
Thuộc tính công khai
Chức năng công cộng
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Dilation2DBackpropInput Class Reference\n\ntensorflow::ops::Dilation2DBackpropInput\n========================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradient of morphological 2-D dilation with respect to the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, depth]`.\n- filter: 3-D with shape `[filter_height, filter_width, depth]`.\n- out_backprop: 4-D with shape `[batch, out_height, out_width, depth]`.\n- strides: 1-D of length 4. The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`.\n- rates: 1-D of length 4. The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, in_height, in_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dilation2DBackpropInput](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a656665a13419870e177ca6b67a869f31)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [in_backprop](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a40353e552051aa8801ef9f9ad4efc15c) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a02412d298e84e41cd1bd2a21b9a064f4) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1ab58e7a7ffead7f2dd0dcc062204f47f8)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a4ad020555d5b8ffc10bdf49956232358)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a8029c3562d2413ed5a8b249933690e32)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### in_backprop\n\n```scdoc\n::tensorflow::Output in_backprop\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### Dilation2DBackpropInput\n\n```gdscript\n Dilation2DBackpropInput(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]