Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: IdentitàN
#include <array_ops.h>
Restituisce un elenco di tensori con le stesse forme e contenuti dell'input.
Riepilogo
tensori.
Questa operazione può essere utilizzata per sovrascrivere il gradiente per funzioni complicate. Ad esempio, supponiamo che y = f(x) e desideriamo applicare una funzione personalizzata g per backprop tale che dx = g(dy). In Pitone,
with tf.get_default_graph().gradient_override_map(
{'IdentityN': 'OverrideGradientWithG'}):
y, _ = identity_n([f(x), x])
.RegisterGradient('OverrideGradientWithG')
def ApplyG(op, dy, _):
return [None, g(dy)] # Do not backprop to f(x).
Argomenti:
Resi:
-
OutputList
: il tensore di output.
Funzioni pubbliche |
---|
operator[] (size_t index) const | |
Attributi pubblici
Funzioni pubbliche
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-27 UTC.
[null,null,["Ultimo aggiornamento 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::IdentityN Class Reference\n\ntensorflow::ops::IdentityN\n==========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a list of tensors with the same shapes and contents as the input.\n\nSummary\n-------\n\ntensors.\n\nThis op can be used to override the gradient for complicated functions. For example, suppose y = f(x) and we wish to apply a custom function g for backprop such that dx = g(dy). In Python,\n\n\n```scdoc\nwith tf.get_default_graph().gradient_override_map(\n {'IdentityN': 'OverrideGradientWithG'}):\n y, _ = identity_n([f(x), x])\n```\n\n\u003cbr /\u003e\n\n\n```gas\n.RegisterGradient('OverrideGradientWithG')\ndef ApplyG(op, dy, _):\n return [None, g(dy)] # Do not backprop to f(x).\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList`: The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [IdentityN](#classtensorflow_1_1ops_1_1_identity_n_1a6643cba5b78cac36cc7b45f5e6ac03be)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` input)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_identity_n_1aab1042fbd2a1eb89667e580c77cda3db) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_identity_n_1adcada4788c180a31ade058caf543a8ce) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operator[]](#classtensorflow_1_1ops_1_1_identity_n_1ab03e879700560bb229b66d06d1bccc71)`(size_t index) const ` | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::OutputList output\n``` \n\nPublic functions\n----------------\n\n### IdentityN\n\n```gdscript\n IdentityN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList input\n)\n``` \n\n### operator\\[\\]\n\n```gdscript\n::tensorflow::Output operator[](\n size_t index\n) const \n```"]]