Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
flujo tensor:: operaciones:: CuantizadoConv2D
#include <nn_ops.h>
Calcula una convolución 2D dada la entrada 4D cuantificada y los tensores de filtro.
Resumen
Las entradas son tensores cuantificados donde el valor más bajo representa el número real del mínimo asociado y el más alto representa el máximo. Esto significa que sólo puede interpretar la salida cuantificada de la misma manera, teniendo en cuenta los valores mínimo y máximo devueltos.
Argumentos:
- alcance: un objeto de alcance
- filtro: la dimensión input_ Depth del filtro debe coincidir con las dimensiones de profundidad de la entrada.
- min_input: el valor flotante que representa el valor de entrada cuantificado más bajo.
- max_input: el valor flotante que representa el valor de entrada cuantificado más alto.
- min_filter: el valor flotante que representa el valor de filtro cuantificado más bajo.
- max_filter: el valor flotante que representa el valor de filtro cuantificado más alto.
- zancadas: la zancada de la ventana deslizante para cada dimensión del tensor de entrada.
- padding: El tipo de algoritmo de relleno a utilizar.
Atributos opcionales (ver Attrs
):
- dilataciones: tensor 1-D de longitud 4. El factor de dilatación para cada dimensión de
input
. Si se establece en k > 1, se omitirán k-1 celdas entre cada elemento de filtro en esa dimensión. El orden de las dimensiones está determinado por el valor de data_format
; consulte más arriba para obtener más detalles. Las dilataciones en las dimensiones de lote y profundidad deben ser 1.
Devoluciones:
- Salida
Output
-
Output
min_output: el valor flotante que representa el valor de salida cuantificado más bajo. -
Output
max_output: el valor flotante que representa el valor de salida cuantificado más alto.
Constructores y destructores |
---|
QuantizedConv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, :: tensorflow::Input min_input, :: tensorflow::Input max_input, :: tensorflow::Input min_filter, :: tensorflow::Input max_filter, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
QuantizedConv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, :: tensorflow::Input min_input, :: tensorflow::Input max_input, :: tensorflow::Input min_filter, :: tensorflow::Input max_filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const QuantizedConv2D::Attrs & attrs) |
Funciones estáticas públicas |
---|
Dilations (const gtl::ArraySlice< int > & x) | |
OutType (DataType x) | |
Atributos públicos
Funciones públicas
Funciones estáticas públicas
dilataciones
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
Tipo de salida
Attrs OutType(
DataType x
)
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-27 (UTC).
[null,null,["Última actualización: 2025-07-27 (UTC)."],[],[],null,["# tensorflow::ops::QuantizedConv2D Class Reference\n\ntensorflow::ops::QuantizedConv2D\n================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes a 2D convolution given quantized 4D input and filter tensors.\n\nSummary\n-------\n\nThe inputs are quantized tensors where the lowest value represents the real number of the associated minimum, and the highest represents the maximum. This means that you can only interpret the quantized output in the same way, by taking the returned minimum and maximum values into account.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- filter: filter's input_depth dimension must match input's depth dimensions.\n- min_input: The float value that the lowest quantized input value represents.\n- max_input: The float value that the highest quantized input value represents.\n- min_filter: The float value that the lowest quantized filter value represents.\n- max_filter: The float value that the highest quantized filter value represents.\n- strides: The stride of the sliding window for each dimension of the input tensor.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs)):\n\n- dilations: 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) min_output: The float value that the lowest quantized output value represents.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) max_output: The float value that the highest quantized output value represents.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedConv2D](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a8376b9a3557650a011f9c6edb484ec8b)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [QuantizedConv2D](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1aa852757615972228954f6d67b3bb8d59)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[QuantizedConv2D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [max_output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a66d14c5a2888abbc7ae9e711a2fdced8) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [min_output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1aac559559eda7e4da378605b1b88d3320) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a36cc12c83f91d1503e6cdeadc7e43272) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1af1401fc53bb8d0556a50807c662bbd61) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [Dilations](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1ae5e27c80b00ace7bafa06479bc01ac5e)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs) |\n| [OutType](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1ad52eb17c8042ea7f90ded915f9f2aa53)`(DataType x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::QuantizedConv2D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs) | Optional attribute setters for [QuantizedConv2D](/versions/r2.3/api_docs/cc/class/tensorflow/ops/quantized-conv2-d#classtensorflow_1_1ops_1_1_quantized_conv2_d). |\n\nPublic attributes\n-----------------\n\n### max_output\n\n```scdoc\n::tensorflow::Output max_output\n``` \n\n### min_output\n\n```scdoc\n::tensorflow::Output min_output\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### QuantizedConv2D\n\n```gdscript\n QuantizedConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n ::tensorflow::Input min_filter,\n ::tensorflow::Input max_filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### QuantizedConv2D\n\n```gdscript\n QuantizedConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n ::tensorflow::Input min_filter,\n ::tensorflow::Input max_filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const QuantizedConv2D::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### OutType\n\n```text\nAttrs OutType(\n DataType x\n)\n```"]]