Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: Kwantyzowane Conv2D
#include <nn_ops.h>
Oblicza splot 2D, biorąc pod uwagę skwantowane dane wejściowe 4D i tensory filtrów.
Streszczenie
Dane wejściowe to skwantowane tensory, gdzie najniższa wartość reprezentuje rzeczywistą liczbę powiązanego minimum, a najwyższa reprezentuje maksimum. Oznacza to, że skwantowany wynik można interpretować tylko w ten sam sposób, biorąc pod uwagę zwrócone wartości minimalne i maksymalne.
Argumenty:
- zakres: Obiekt Scope
- filtr: wymiar głębokości_wejściowej filtra musi odpowiadać wymiarom głębokości wejścia.
- min_input: Wartość zmiennoprzecinkowa reprezentowana przez najniższą skwantowaną wartość wejściową.
- max_input: Wartość zmiennoprzecinkowa reprezentowana przez najwyższą skwantowaną wartość wejściową.
- min_filter: Wartość zmiennoprzecinkowa reprezentowana przez najniższą wartość filtra kwantyzowanego.
- max_filter: Wartość zmiennoprzecinkowa reprezentowana przez najwyższą wartość filtra kwantyzowanego.
- kroki: krok przesuwanego okna dla każdego wymiaru tensora wejściowego.
- dopełnienie: typ algorytmu dopełniania, który ma zostać użyty.
Opcjonalne atrybuty (patrz Attrs
):
- dylatacje: tensor 1-D długości 4. Współczynnik dylatacji dla każdego wymiaru
input
. Jeśli ustawione na k > 1, pomiędzy każdym elementem filtrującym w tym wymiarze zostanie pominiętych komórek k-1. Kolejność wymiarów jest określona przez wartość data_format
, szczegóły znajdziesz powyżej. Dylatacje w wymiarach partii i głębokości muszą wynosić 1.
Zwroty:
- Wyjście
Output
-
Output
min_output: Wartość zmiennoprzecinkowa reprezentowana przez najniższą skwantowaną wartość wyjściową. -
Output
max_output: Wartość zmiennoprzecinkowa, którą reprezentuje najwyższa skwantowana wartość wyjściowa.
Konstruktory i destruktory |
---|
QuantizedConv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, :: tensorflow::Input min_input, :: tensorflow::Input max_input, :: tensorflow::Input min_filter, :: tensorflow::Input max_filter, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
QuantizedConv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, :: tensorflow::Input min_input, :: tensorflow::Input max_input, :: tensorflow::Input min_filter, :: tensorflow::Input max_filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const QuantizedConv2D::Attrs & attrs) |
Publiczne funkcje statyczne |
---|
Dilations (const gtl::ArraySlice< int > & x) | |
OutType (DataType x) | |
Atrybuty publiczne
Funkcje publiczne
Publiczne funkcje statyczne
Dylatacje
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
Typ zewnętrzny
Attrs OutType(
DataType x
)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-27 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::QuantizedConv2D Class Reference\n\ntensorflow::ops::QuantizedConv2D\n================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes a 2D convolution given quantized 4D input and filter tensors.\n\nSummary\n-------\n\nThe inputs are quantized tensors where the lowest value represents the real number of the associated minimum, and the highest represents the maximum. This means that you can only interpret the quantized output in the same way, by taking the returned minimum and maximum values into account.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- filter: filter's input_depth dimension must match input's depth dimensions.\n- min_input: The float value that the lowest quantized input value represents.\n- max_input: The float value that the highest quantized input value represents.\n- min_filter: The float value that the lowest quantized filter value represents.\n- max_filter: The float value that the highest quantized filter value represents.\n- strides: The stride of the sliding window for each dimension of the input tensor.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs)):\n\n- dilations: 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) min_output: The float value that the lowest quantized output value represents.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) max_output: The float value that the highest quantized output value represents.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedConv2D](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a8376b9a3557650a011f9c6edb484ec8b)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [QuantizedConv2D](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1aa852757615972228954f6d67b3bb8d59)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[QuantizedConv2D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [max_output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a66d14c5a2888abbc7ae9e711a2fdced8) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [min_output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1aac559559eda7e4da378605b1b88d3320) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a36cc12c83f91d1503e6cdeadc7e43272) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1af1401fc53bb8d0556a50807c662bbd61) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [Dilations](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1ae5e27c80b00ace7bafa06479bc01ac5e)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs) |\n| [OutType](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1ad52eb17c8042ea7f90ded915f9f2aa53)`(DataType x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::QuantizedConv2D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs) | Optional attribute setters for [QuantizedConv2D](/versions/r2.3/api_docs/cc/class/tensorflow/ops/quantized-conv2-d#classtensorflow_1_1ops_1_1_quantized_conv2_d). |\n\nPublic attributes\n-----------------\n\n### max_output\n\n```scdoc\n::tensorflow::Output max_output\n``` \n\n### min_output\n\n```scdoc\n::tensorflow::Output min_output\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### QuantizedConv2D\n\n```gdscript\n QuantizedConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n ::tensorflow::Input min_filter,\n ::tensorflow::Input max_filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### QuantizedConv2D\n\n```gdscript\n QuantizedConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n ::tensorflow::Input min_filter,\n ::tensorflow::Input max_filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const QuantizedConv2D::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### OutType\n\n```text\nAttrs OutType(\n DataType x\n)\n```"]]