Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: ArgMin
#include <math_ops.h>
Devuelve el índice con el valor más pequeño en las dimensiones de un tensor.
Resumen
Tenga en cuenta que en caso de empates, no se garantiza la identidad del valor devuelto.
Uso:
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.math.argmin(input = a)
c = tf.keras.backend.eval(b)
# c = 0
# here a[0] = 1 which is the smallest element of a across axis 0
Argumentos:
- alcance: un objeto de alcance
- dimensión: int32 o int64, debe estar en el rango
[-rank(input), rank(input))
. Describe en qué dimensión del tensor de entrada se debe reducir. Para los vectores, use dimension = 0.
Devoluciones:
Funciones estáticas públicas |
---|
OutputType (DataType x) | |
Atributos públicos
Funciones publicas
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Salida
operator::tensorflow::Output() const
Funciones estáticas públicas
Tipo de salida
Attrs OutputType(
DataType x
)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-04-20 (UTC)
[null,null,["Última actualización: 2020-04-20 (UTC)"],[],[],null,["# tensorflow::ops::ArgMin Class Reference\n\ntensorflow::ops::ArgMin\n=======================\n\n`#include \u003cmath_ops.h\u003e`\n\nReturns the index with the smallest value across dimensions of a tensor.\n\nSummary\n-------\n\nNote that in case of ties the identity of the return value is not guaranteed.\n\nUsage: \n\n```python\n import tensorflow as tf\n a = [1, 10, 26.9, 2.8, 166.32, 62.3]\n b = tf.math.argmin(input = a)\n c = tf.keras.backend.eval(b)\n # c = 0\n # here a[0] = 1 which is the smallest element of a across axis 0\n \n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- dimension: int32 or int64, must be in the range `[-rank(input), rank(input))`. Describes which dimension of the input [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to reduce across. For vectors, use dimension = 0.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ArgMin](#classtensorflow_1_1ops_1_1_arg_min_1a168791dd65474f6516ead5c14c228809)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dimension)` ||\n| [ArgMin](#classtensorflow_1_1ops_1_1_arg_min_1a585efda09c698305c3b4d4bd52e2ef89)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dimension, const `[ArgMin::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/arg-min/attrs#structtensorflow_1_1ops_1_1_arg_min_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_arg_min_1a2f56dc97fc445cb193387875c3d85750) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_arg_min_1adf842d8733fb5c05cf8773604ce4e39c) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_arg_min_1aaa10eba6321c4a8bc4d7cf58a21e3328)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_arg_min_1a03587f44a8e9ecd6778a4a68e0fcf506)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_arg_min_1a191191cb11c666a611ba6e2bf95c15b7)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|\n| [OutputType](#classtensorflow_1_1ops_1_1_arg_min_1a164b1adce713e1a74f370b6fd657626f)`(DataType x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/arg-min/attrs#structtensorflow_1_1ops_1_1_arg_min_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ArgMin::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/arg-min/attrs) | Optional attribute setters for [ArgMin](/versions/r1.15/api_docs/cc/class/tensorflow/ops/arg-min#classtensorflow_1_1ops_1_1_arg_min). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### ArgMin\n\n```gdscript\n ArgMin(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input dimension\n)\n``` \n\n### ArgMin\n\n```gdscript\n ArgMin(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input dimension,\n const ArgMin::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### OutputType\n\n```text\nAttrs OutputType(\n DataType x\n)\n```"]]