Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : Croix
#include <math_ops.h>
Calculez le produit croisé par paire.
Résumé
a
et b
doivent avoir la même forme ; ils peuvent être soit de simples vecteurs à 3 éléments, soit n'importe quelle forme dont la dimension la plus intérieure est 3. Dans ce dernier cas, chaque paire de vecteurs à 3 éléments correspondants est multipliée indépendamment de manière croisée.
Arguments :
- scope : un objet Scope
- a : Un tenseur contenant des vecteurs à 3 éléments.
- b : Un autre tenseur, du même type et de la même forme que
a
.
Retours :
-
Output
: produit vectoriel par paire des vecteurs dans a
et b
.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::Cross Class Reference\n\ntensorflow::ops::Cross\n======================\n\n`#include \u003cmath_ops.h\u003e`\n\nCompute the pairwise cross product.\n\nSummary\n-------\n\n`a` and `b` must be the same shape; they can either be simple 3-element vectors, or any shape where the innermost dimension is 3. In the latter case, each pair of corresponding 3-element vectors is cross-multiplied independently.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- a: A tensor containing 3-element vectors.\n- b: Another tensor, of same type and shape as `a`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Pairwise cross product of the vectors in `a` and `b`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Cross](#classtensorflow_1_1ops_1_1_cross_1a2d0d3e2d7c97664d9580df02605d9db9)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_cross_1a00b77699cc5ca96059de9e00ba6bad3d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [product](#classtensorflow_1_1ops_1_1_cross_1af8a37ae245753365a272a83d54cb471f) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_cross_1ac31667b61bd41cbe5ecb0c20852475d9)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_cross_1abafd2b168be8b2ceb0944b95755281eb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_cross_1a2303acdef93919770fab13f504054c34)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### product\n\n```text\n::tensorflow::Output product\n``` \n\nPublic functions\n----------------\n\n### Cross\n\n```gdscript\n Cross(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]