tensorflow:: אופס:: SparseApplyAdadelta
#include <training_ops.h>
var: צריך להיות מ-Variable().
תַקצִיר
טיעונים:
- scope: אובייקט Scope
- acum: צריך להיות מ-Variable().
- accum_update: : אמור להיות מ-Variable().
- lr: קצב למידה. חייב להיות סקלר.
- rho: גורם דעיכה. חייב להיות סקלר.
- epsilon: גורם קבוע. חייב להיות סקלר.
- grad: השיפוע.
- מדדים: וקטור של מדדים למימד הראשון של var ו-acum.
מאפיינים אופציונליים (ראה Attrs
):
- use_locking: אם נכון, עדכון של הטנזורים var ו-acum יהיה מוגן על ידי מנעול; אחרת ההתנהגות אינה מוגדרת, אך עלולה להפגין פחות מחלוקת.
החזרות:
-
Output
: זהה ל-"var".
בנאים והורסים | |
---|---|
SparseApplyAdadelta (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input accum_update, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices) | |
SparseApplyAdadelta (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input accum_update, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices, const SparseApplyAdadelta::Attrs & attrs) |
תכונות ציבוריות | |
---|---|
operation | |
out |
תפקידים ציבוריים | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
פונקציות סטטיות ציבוריות | |
---|---|
UseLocking (bool x) |
מבנים | |
---|---|
tensorflow:: ops:: SparseApplyAdadelta:: Attrs | קובעי תכונות אופציונליים עבור SparseApplyAdadelta . |
תכונות ציבוריות
מִבצָע
Operation operation
הַחוּצָה
::tensorflow::Output out
תפקידים ציבוריים
SparseApplyAdadelta
SparseApplyAdadelta( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input accum_update, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices )
SparseApplyAdadelta
SparseApplyAdadelta( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input accum_update, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyAdadelta::Attrs & attrs )
צוֹמֶת
::tensorflow::Node * node() const
מפעיל::tensorflow::קלט
operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const
פונקציות סטטיות ציבוריות
השתמש בנעילה
Attrs UseLocking( bool x )
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[],[],null,["# tensorflow::ops::SparseApplyAdadelta Class Reference\n\ntensorflow::ops::SparseApplyAdadelta\n====================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nvar: Should be from a Variable().\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- accum: Should be from a Variable().\n- accum_update: : Should be from a Variable().\n- lr: Learning rate. Must be a scalar.\n- rho: Decay factor. Must be a scalar.\n- epsilon: Constant factor. Must be a scalar.\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var and accum.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/sparse-apply-adadelta/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adadelta_1_1_attrs)):\n\n- use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseApplyAdadelta](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1a10346d215f776d3e4336554f052545cb)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum_update, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices)` ||\n| [SparseApplyAdadelta](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1a9a4a32f0d7bc40f4c2f4960151b6652d)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum_update, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, const `[SparseApplyAdadelta::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/sparse-apply-adadelta/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adadelta_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1a24902e3a0d9ef60b0d3b286887554f70) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1a50eabd8a7e93bf722f57c0af4c445d20) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1afb4c76f26417ba0b14db299bca528f40)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1a7bbe6b4f17ecf1a92a119908aba54c77)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1a18310637d40bc623ca8f548c13bb54aa)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_sparse_apply_adadelta_1acbdbc14d33d39c6d7e41685963b0a775)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/sparse-apply-adadelta/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adadelta_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseApplyAdadelta::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/sparse-apply-adadelta/attrs) | Optional attribute setters for [SparseApplyAdadelta](/versions/r1.15/api_docs/cc/class/tensorflow/ops/sparse-apply-adadelta#classtensorflow_1_1ops_1_1_sparse_apply_adadelta). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### SparseApplyAdadelta\n\n```gdscript\n SparseApplyAdadelta(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input accum_update,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices\n)\n``` \n\n### SparseApplyAdadelta\n\n```gdscript\n SparseApplyAdadelta(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input accum_update,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n const SparseApplyAdadelta::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]