Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : TensorArraySplit
#include <data_flow_ops.h>
Divisez les données de la valeur d'entrée en éléments TensorArray .
Résumé
En supposant que lengths
prennent des valeurs
(n0, n1, ..., n(T-1))
and that `value` has shape
(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,
this splits values into a TensorArray with T tensors.
TensorArray index t will be the subtensor of values with starting position
```(n0 + n1 + ... + n(t-1), 0, 0, ...)
and having size
nt x d0 x d1 x ...```
Arguments:
- scope: A Scope object
- handle: The handle to a TensorArray.
- value: The concatenated tensor to write to the TensorArray.
- lengths: The vector of lengths, how to split the rows of value into the TensorArray.
- flow_in: A float scalar that enforces proper chaining of operations.
Returns:
Output
: A float scalar that enforces proper chaining of operations.
Public attributes
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/25 (UTC).
[null,null,["Dernière mise à jour le 2025/07/25 (UTC)."],[],[],null,["# tensorflow::ops::TensorArraySplit Class Reference\n\ntensorflow::ops::TensorArraySplit\n=================================\n\n`#include \u003cdata_flow_ops.h\u003e`\n\nSplit the data from the input value into [TensorArray](/versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array) elements.\n\nSummary\n-------\n\nAssuming that `lengths` takes on values\n\n(n0, n1, ..., n(T-1)) \n\n``````mysql\n\n \n and that `value` has shape\n \n \n`````text\n(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,\n this splits values into a /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array with T tensors.\n /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array index t will be the subtensor of values with starting position\n ```(n0 + n1 + ... + n(t-1), 0, 0, ...)\u003cbr /\u003e\n\n\n\n \n\n \n\n```\nand having size\n```\n\n \n\u003cbr /\u003e\n\n\n\n \n\u003cbr /\u003e\n\n\n\n\n````gdscript\nnt x d0 x d1 x ...```\n Arguments:\n \n- scope: A /versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope object\n\n \n- handle: The handle to a /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- value: The concatenated tensor to write to the /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- lengths: The vector of lengths, how to split the rows of value into the /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- flow_in: A float scalar that enforces proper chaining of operations.\n\n \n\n Returns:\n \n- /versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output: A float scalar that enforces proper chaining of operations. \n\n \n\n \n\n\n \n### Constructors and Destructors\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ae33a80f5f64f1d0ce47cb9ba380ee6bb(const ::/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input handle, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input value, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input lengths, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input flow_in)\n \n\n \n\n\n \n\n\n \n### Public attributes\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a6a6beee076f43e4045b8327c9a8f0be9\n \n\n \n\n ::/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a1cf9133d6b7032ba48abeff356547a58\n \n\n \n\n /versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation\n \n\n \n\n\n \n\n\n \n### Public functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ad03cc93202545e0234d90faee0425ed9() const \n \n\n \n\n ::tensorflow::Node *\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ac2029be4ba96df5da32f6bd0fc3fb8b1() const \n \n\n \n\n `\n` \n`\n` \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ab90a5c257e9a8df6209a663ade45e3fc() const \n \n\n \n\n `\n` \n`\n` \n\n\n Public attributes\n \n \n### flow_out\n\n\n \n```\n::tensorflow::Output flow_out\n```\n\n \n\n \n \n \n### operation\n\n\n \n\n\n```text\nOperation operation\n```\n\n \n\n \n Public functions\n \n \n### TensorArraySplit\n\n\n \n\n\n```gdscript\n TensorArraySplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input handle,\n ::tensorflow::Input value,\n ::tensorflow::Input lengths,\n ::tensorflow::Input flow_in\n)\n```\n\n \n\n \n \n \n### node\n\n\n \n\n\n```gdscript\n::tensorflow::Node * node() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Input\n\n\n \n\n\n```gdscript\n operator::tensorflow::Input() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Output\n\n\n \n\n\n```gdscript\n operator::tensorflow::Output() const \n```\n\n \n\n \n\n \n\n \n````\n`````\n``````"]]