Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
#include <array_ops.h>
Ekstrak patches
dari input
dan letakkan di dimensi keluaran "kedalaman".
Ringkasan
Ekstensi 3D dari extract_image_patches
.
Argumen:
- ruang lingkup: Objek Lingkup
- masukan: Tensor 5-D dengan bentuk
[batch, in_planes, in_rows, in_cols, depth]
. - ksizes: Ukuran jendela geser untuk setiap dimensi
input
. - langkah: panjang 1-D 5. Seberapa jauh pusat dari dua bidang yang berurutan di
input
. Harus: [1, stride_planes, stride_rows, stride_cols, 1]
. - padding: Jenis algoritma padding yang akan digunakan.
Kami menentukan atribut terkait ukuran sebagai:
ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]
strides = [1, stride_planes, strides_rows, strides_cols, 1]
Pengembalian:
-
Output
: Tensor 5-D dengan bentuk [batch, out_planes, out_rows, out_cols, ksize_planes * ksize_rows * ksize_cols * depth]
berisi patch dengan ukuran ksize_planes x ksize_rows x ksize_cols x depth
yang divektorkan dalam dimensi "kedalaman". Catatan out_planes
, out_rows
dan out_cols
adalah dimensi patch keluaran.
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ExtractVolumePatches Class Reference\n\ntensorflow::ops::ExtractVolumePatches\n=====================================\n\n`#include \u003carray_ops.h\u003e`\n\nExtract `patches` from `input` and put them in the \"depth\" output dimension.\n\nSummary\n-------\n\n3D extension of `extract_image_patches`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 5-D [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, in_planes, in_rows, in_cols, depth]`.\n- ksizes: The size of the sliding window for each dimension of `input`.\n- strides: 1-D of length 5. How far the centers of two consecutive patches are in `input`. Must be: `[1, stride_planes, stride_rows, stride_cols, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nWe specify the size-related attributes as:\n\n\n```scdoc\n ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]\n strides = [1, stride_planes, strides_rows, strides_cols, 1]\n```\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 5-D [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, out_planes, out_rows, out_cols, ksize_planes * ksize_rows * ksize_cols * depth]` containing patches with size `ksize_planes x ksize_rows x ksize_cols x depth` vectorized in the \"depth\" dimension. Note `out_planes`, `out_rows` and `out_cols` are the dimensions of the output patches.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExtractVolumePatches](#classtensorflow_1_1ops_1_1_extract_volume_patches_1a752dba9a13577efb227d68e11e73e4e7)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const gtl::ArraySlice\u003c int \u003e & ksizes, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_extract_volume_patches_1ab7a74fc2dc2e90c7c44399f5673a6664) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [patches](#classtensorflow_1_1ops_1_1_extract_volume_patches_1a88a4e306f94549ed420d3e6770bf7bbc) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_extract_volume_patches_1ad156203fcbe558f0a53b6c0b7f34c016)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_extract_volume_patches_1ad316cf0f924cac92315f835a66c577f8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_extract_volume_patches_1a6ff00c0c8df929a77bf90a0258d87a88)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### patches\n\n```text\n::tensorflow::Output patches\n``` \n\nPublic functions\n----------------\n\n### ExtractVolumePatches\n\n```gdscript\n ExtractVolumePatches(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const gtl::ArraySlice\u003c int \u003e & ksizes,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]