Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: LRN
#include <nn_ops.h>
Normalizacja odpowiedzi lokalnej.
Streszczenie
Tensor input
4-D jest traktowany jako tablica 3-D wektorów 1-D (wzdłuż ostatniego wymiaru), a każdy wektor jest normalizowany niezależnie. W obrębie danego wektora każdy składnik jest dzielony przez ważoną kwadratową sumę danych wejściowych w depth_radius
. Szczegółowo,
sqr_sum[a, b, c, d] =
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta
Aby uzyskać szczegółowe informacje, zobacz Krizhevsky i in., Klasyfikacja ImageNet z głębokimi splotowymi sieciami neuronowymi (NIPS 2012) .
Argumenty:
- zakres: Obiekt Scope
- wejście: 4-D.
Opcjonalne atrybuty (patrz Attrs
):
- promień_głębokości: 0-D. Połowa szerokości okna normalizacji 1-D.
- odchylenie: przesunięcie (zwykle dodatnie, aby uniknąć dzielenia przez 0).
- alfa: Współczynnik skali, zwykle dodatni.
- beta: wykładnik.
Zwroty:
Atrybuty publiczne
Funkcje publiczne
węzeł
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Wyjście
operator::tensorflow::Output() const
Publiczne funkcje statyczne
Alfa
Attrs Alpha(
float x
)
Beta
Attrs Beta(
float x
)
Stronniczość
Attrs Bias(
float x
)
GłębokośćPromień
Attrs DepthRadius(
int64 x
)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-27 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::LRN Class Reference\n\ntensorflow::ops::LRN\n====================\n\n`#include \u003cnn_ops.h\u003e`\n\nLocal Response Normalization.\n\nSummary\n-------\n\nThe 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within `depth_radius`. In detail, \n\n```scdoc\nsqr_sum[a, b, c, d] =\n sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)\noutput = input / (bias + alpha * sqr_sum) ** beta\n```\n\n\u003cbr /\u003e\n\nFor details, see [Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks).\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs)):\n\n- depth_radius: 0-D. Half-width of the 1-D normalization window.\n- bias: An offset (usually positive to avoid dividing by 0).\n- alpha: A scale factor, usually positive.\n- beta: An exponent.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [LRN](#classtensorflow_1_1ops_1_1_l_r_n_1adbadf9462bc6ae9916f535bb2aa2762f)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input)` ||\n| [LRN](#classtensorflow_1_1ops_1_1_l_r_n_1ab702d3657c46710fcf7a63f7c712c5df)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const `[LRN::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_l_r_n_1a001e6e41e5fb3ff78b42decdd680ea82) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_l_r_n_1a69396918e55e1de00f68a1113ef173b0) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_l_r_n_1aa28d07232c5df13dad811653f1276a2a)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_l_r_n_1aa00d48e5a8ca805aa2532b7155b8c28b)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_l_r_n_1ae58da447d50c92abb12785d8ab7b618b)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|\n| [Alpha](#classtensorflow_1_1ops_1_1_l_r_n_1a7788a93182ddfbf8bb5bd1820b081392)`(float x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n| [Beta](#classtensorflow_1_1ops_1_1_l_r_n_1a6bbb26306e2265f6e2368f5dfb39ef13)`(float x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n| [Bias](#classtensorflow_1_1ops_1_1_l_r_n_1ac8da24639c0d90ef6e68df756f3e345f)`(float x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n| [DepthRadius](#classtensorflow_1_1ops_1_1_l_r_n_1ac579054901f30ab7fd4989ca39237a0e)`(int64 x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::LRN::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs) | Optional attribute setters for [LRN](/versions/r2.2/api_docs/cc/class/tensorflow/ops/l-r-n#classtensorflow_1_1ops_1_1_l_r_n). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### LRN\n\n```gdscript\n LRN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input\n)\n``` \n\n### LRN\n\n```gdscript\n LRN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const LRN::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Alpha\n\n```text\nAttrs Alpha(\n float x\n)\n``` \n\n### Beta\n\n```text\nAttrs Beta(\n float x\n)\n``` \n\n### Bias\n\n```text\nAttrs Bias(\n float x\n)\n``` \n\n### DepthRadius\n\n```text\nAttrs DepthRadius(\n int64 x\n)\n```"]]