Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Ma TrậnDiagPartV3
#include <array_ops.h>
Trả về phần đường chéo theo đợt của một tenxơ theo đợt.
Bản tóm tắt
Trả về một tenxơ có đường chéo k[0]
-th đến k[1]
- của input
đợt .
Giả sử input
có r
kích thước [I, J, ..., L, M, N]
. Đặt max_diag_len
là độ dài tối đa trong số tất cả các đường chéo được trích xuất, max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Gọi num_diags
là số đường chéo cần giải nén, num_diags = k[1] - k[0] + 1
.
Nếu num_diags == 1
, tensor đầu ra có hạng r - 1
với hình dạng [I, J, ..., L, max_diag_len]
và các giá trị:
diagonal[i, j, ..., l, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
trong đó
y = max(-k[1], 0)
,
x = max(k[1], 0)
.
Ngược lại, tenxơ đầu ra có hạng r
với các kích thước [I, J, ..., L, num_diags, max_diag_len]
với các giá trị:
diagonal[i, j, ..., l, m, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
trong đó
d = k[1] - m
,
y = max(-d, 0) - offset
và
x = max(d, 0) - offset
.
offset
bằng 0 ngoại trừ khi căn chỉnh đường chéo ở bên phải.
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
and `d >= 0`) or
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
and `d <= 0`)
0 ; otherwise
trong đó
diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))
.
Đầu vào ít nhất phải là ma trận.
Ví dụ:
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)
[5, 6, 7, 8],
[9, 8, 7, 6]],
[[5, 4, 3, 2],
[1, 2, 3, 4],
[5, 6, 7, 8]]])
# A main diagonal from each batch.
tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3)
[5, 2, 7]]
# A superdiagonal from each batch.
tf.matrix_diag_part(input, k = 1)
==> [[2, 7, 6], # Output shape: (2, 3)
[4, 3, 8]]
# A band from each batch.
tf.matrix_diag_part(input, k = (-1, 2))
==> [[[0, 3, 8], # Output shape: (2, 4, 3)
[2, 7, 6],
[1, 6, 7],
[5, 8, 0]],
[[0, 3, 4],
[4, 3, 8],
[5, 2, 7],
[1, 6, 0]]]
# LEFT_RIGHT alignment.
tf.matrix_diag_part(input, k = (-1, 2), align="LEFT_RIGHT")
==> [[[3, 8, 0], # Output shape: (2, 4, 3)
[2, 7, 6],
[1, 6, 7],
[0, 5, 8]],
[[3, 4, 0],
[4, 3, 8],
[5, 2, 7],
[0, 1, 6]]]
# max_diag_len can be shorter than the main diagonal.
tf.matrix_diag_part(input, k = (-2, -1))
==> [[[5, 8],
[9, 0]],
[[1, 6],
[5, 0]]]
# padding_value = 9
tf.matrix_diag_part(input, k = (1, 3), padding_value = 9)
==> [[[9, 9, 4], # Output shape: (2, 3, 3)
[9, 3, 8],
[2, 7, 6]],
[[9, 9, 2],
[9, 3, 4],
[4, 3, 8]]]
Arguments:
- scope: A Scope object
- input: Rank
r
tensor where r >= 2
.
- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
k
can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0]
must not be larger than k[1]
.
- padding_value: The value to fill the area outside the specified diagonal band with. Default is 0.
Optional attributes (see Attrs
):
- align: Some diagonals are shorter than
max_diag_len
and need to be padded. align
is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
Returns:
Output
: The extracted diagonal(s).
Public static functions
|
Align(StringPiece x)
|
|
Public attributes
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Các hàm tĩnh công khai
Căn chỉnh
Attrs Align(
StringPiece x
)
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-27 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::MatrixDiagPartV3 Class Reference\n\ntensorflow::ops::MatrixDiagPartV3\n=================================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the batched diagonal part of a batched tensor.\n\nSummary\n-------\n\nReturns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input`.\n\nAssume `input` has `r` dimensions `[I, J, ..., L, M, N]`. Let `max_diag_len` be the maximum length among all diagonals to be extracted, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` Let `num_diags` be the number of diagonals to extract, `num_diags = k[1] - k[0] + 1`.\n\nIf `num_diags == 1`, the output tensor is of rank `r - 1` with shape `[I, J, ..., L, max_diag_len]` and values:\n\n\u003cbr /\u003e\n\n```scdoc\ndiagonal[i, j, ..., l, n]\n = input[i, j, ..., l, n+y, n+x] ; if 0 \u003c= n+y \u003c M and 0 \u003c= n+x \u003c N,\n padding_value ; otherwise.\n```\nwhere `y = max(-k[1], 0)`, `x = max(k[1], 0)`.\n\n\u003cbr /\u003e\n\nOtherwise, the output tensor has rank `r` with dimensions `[I, J, ..., L, num_diags, max_diag_len]` with values:\n\n\u003cbr /\u003e\n\n```scdoc\ndiagonal[i, j, ..., l, m, n]\n = input[i, j, ..., l, n+y, n+x] ; if 0 \u003c= n+y \u003c M and 0 \u003c= n+x \u003c N,\n padding_value ; otherwise.\n```\nwhere `d = k[1] - m`, `y = max(-d, 0) - offset`, and `x = max(d, 0) - offset`.\n\n\u003cbr /\u003e\n\n`offset` is zero except when the alignment of the diagonal is to the right. \n\n```mysql\noffset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}\n and `d \u003e= 0`) or\n (`align` in {LEFT_RIGHT, RIGHT_RIGHT}\n and `d \u003c= 0`)\n 0 ; otherwise\n```\nwhere `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`.\n\n\u003cbr /\u003e\n\nThe input must be at least a matrix.\n\nFor example:\n\n\n```text\ninput = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)\n [5, 6, 7, 8],\n [9, 8, 7, 6]],\n [[5, 4, 3, 2],\n [1, 2, 3, 4],\n [5, 6, 7, 8]]])\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A main diagonal from each batch.\ntf.matrix_diag_part(input) ==\u003e [[1, 6, 7], # Output shape: (2, 3)\n [5, 2, 7]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A superdiagonal from each batch.\ntf.matrix_diag_part(input, k = 1)\n ==\u003e [[2, 7, 6], # Output shape: (2, 3)\n [4, 3, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A band from each batch.\ntf.matrix_diag_part(input, k = (-1, 2))\n ==\u003e [[[0, 3, 8], # Output shape: (2, 4, 3)\n [2, 7, 6],\n [1, 6, 7],\n [5, 8, 0]],\n [[0, 3, 4],\n [4, 3, 8],\n [5, 2, 7],\n [1, 6, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# LEFT_RIGHT alignment.\ntf.matrix_diag_part(input, k = (-1, 2), align=\"LEFT_RIGHT\")\n ==\u003e [[[3, 8, 0], # Output shape: (2, 4, 3)\n [2, 7, 6],\n [1, 6, 7],\n [0, 5, 8]],\n [[3, 4, 0],\n [4, 3, 8],\n [5, 2, 7],\n [0, 1, 6]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# max_diag_len can be shorter than the main diagonal.\ntf.matrix_diag_part(input, k = (-2, -1))\n ==\u003e [[[5, 8],\n [9, 0]],\n [[1, 6],\n [5, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# padding_value = 9\ntf.matrix_diag_part(input, k = (1, 3), padding_value = 9)\n ==\u003e [[[9, 9, 4], # Output shape: (2, 3, 3)\n [9, 3, 8],\n [2, 7, 6]],\n [[9, 9, 2],\n [9, 3, 4],\n [4, 3, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n````gdscript\n \n Arguments:\n \n- scope: A /versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope object\n\n \n- input: Rank r tensor where r \u003e= 2.\n\n \n- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. k can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0] must not be larger than k[1].\n\n \n- padding_value: The value to fill the area outside the specified diagonal band with. Default is 0.\n\n \n\n Optional attributes (see /versions/r2.2/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs#structtensorflow_1_1ops_1_1_matrix_diag_part_v3_1_1_attrs):\n \n- align: Some diagonals are shorter than max_diag_len and need to be padded. align is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: \"RIGHT_LEFT\" (default), \"LEFT_RIGHT\", \"LEFT_LEFT\", and \"RIGHT_RIGHT\". \"RIGHT_LEFT\" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses \"LEFT_RIGHT\", which is the opposite alignment.\n\n \n\n Returns:\n \n- /versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output: The extracted diagonal(s). \n\n \n\n \n\n\n \n### Constructors and Destructors\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1abda51edecba9f012bd9118b2b4e4eb39(const ::/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input input, ::/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input k, ::/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input padding_value)\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1ab2a7181a88ac68c2c1f8aa8e54d94f36(const ::/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input input, ::/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input k, ::/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input padding_value, const /versions/r2.2/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs#structtensorflow_1_1ops_1_1_matrix_diag_part_v3_1_1_attrs & attrs)\n \n\n \n\n\n \n\n\n \n### Public attributes\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1ab5b1ebb490b4c3ac451095ad9c2860ce\n \n\n \n\n ::/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1aab8e9d1b13b2fafd7954d2acc89077f3\n \n\n \n\n /versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation\n \n\n \n\n\n \n\n\n \n### Public functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1a42ebd82d85100f3cae0b90acce7c7d41() const \n \n\n \n\n ::tensorflow::Node *\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1a077796bdba19bb0c51a49a758b47b2f7() const \n \n\n \n\n `\n` \n`\n` \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1aad6d6537777dd1424e046801937d308c() const \n \n\n \n\n `\n` \n`\n` \n\n\n \n\n\n \n### Public static functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1a2bd0085f20db6aaa612f12494bfd9c6e(StringPiece x)\n \n\n \n\n /versions/r2.2/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs#structtensorflow_1_1ops_1_1_matrix_diag_part_v3_1_1_attrs\n \n\n \n\n\n \n\n\n \n### Structs\n\n\n \n\n\n\n /versions/r2.2/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs\n \n\n \nOptional attribute setters for /versions/r2.2/api_docs/cc/class/tensorflow/ops/matrix-diag-part-v3#classtensorflow_1_1ops_1_1_matrix_diag_part_v3. \n\n \n\n\n Public attributes\n \n \n### diagonal\n\n\n \n```\n::tensorflow::Output diagonal\n```\n\n \n\n \n \n \n### operation\n\n\n \n\n\n```text\nOperation operation\n```\n\n \n\n \n Public functions\n \n \n### MatrixDiagPartV3\n\n\n \n\n\n```gdscript\n MatrixDiagPartV3(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input k,\n ::tensorflow::Input padding_value\n)\n```\n\n \n\n \n \n \n### MatrixDiagPartV3\n\n\n \n\n\n```gdscript\n MatrixDiagPartV3(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input k,\n ::tensorflow::Input padding_value,\n const MatrixDiagPartV3::Attrs & attrs\n)\n```\n\n \n\n \n \n \n### node\n\n\n \n\n\n```gdscript\n::tensorflow::Node * node() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Input\n\n\n \n\n\n```gdscript\n operator::tensorflow::Input() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Output\n\n\n \n\n\n```gdscript\n operator::tensorflow::Output() const \n```\n\n \n\n \n Public static functions\n \n \n### Align\n\n\n \n\n\n```text\nAttrs Align(\n StringPiece x\n)\n```\n\n \n\n \n\n \n\n \n````"]]