Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: SeyrekYoğunCwiseEkle
#include <sparse_ops.h>
Bu özel kuralları kullanarak bir SparseTensor ve bir yoğun Tensor'u toplar:
Özet
(1) Uygun olması halinde yoğun tarafı seyrek tarafla aynı şekle sahip olacak şekilde yayınlar; (2) Daha sonra cwise toplama işlemine yalnızca SparseTensor endekslerinin işaret ettiği yoğun değerler katılır.
Bu kurallara göre sonuç, tamamen aynı endekslere ve şekle sahip, ancak muhtemelen sıfırdan farklı değerlere sahip mantıksal bir SparseTensor'dur. Bu Op'un çıktısı sonuçtaki sıfır olmayan değerlerdir.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- sp_indeksleri: 2-D. Bir SparseTensor'da boş olmayan değerlerin indekslerini içeren
N x R
matrisi, muhtemelen kanonik sıralamada değildir. - sp_values: 1-D.
sp_indices
karşılık gelen N
boş olmayan değer. - sp_shape: 1-D. SparseTensor girişinin şekli.
- yoğun:
R
-D. Yoğun Tensör işleneni.
İade:
-
Output
: 1-D. Çalıştırılan N
değerleri.
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::SparseDenseCwiseAdd Class Reference\n\ntensorflow::ops::SparseDenseCwiseAdd\n====================================\n\n`#include \u003csparse_ops.h\u003e`\n\nAdds up a SparseTensor and a dense [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor), using these special rules:\n\nSummary\n-------\n\n(1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition.\n\nBy these rules, the result is a logical SparseTensor with exactly the same indices and shape, but possibly with different non-zero values. The output of this Op is the resultant non-zero values.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.\n- sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`.\n- sp_shape: 1-D. Shape of the input SparseTensor.\n- dense: `R`-D. The dense [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) operand.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1-D. The `N` values that are operated on.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseDenseCwiseAdd](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1a40c54ec3d21552370675a287e1998c0f)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_indices, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_values, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_shape, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dense)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1a72eb8f04e1ba3079957c50afaaa13e79) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1afe9875882370618c9e8b76e5d1dccb26) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1a4e49f5451389b499b3f51dfeb39146b6)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1ac05df51f21a0dc708e8ab33c853e5d6c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1af0582cc0d8c6d71b9de9e50358f27392)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseDenseCwiseAdd\n\n```gdscript\n SparseDenseCwiseAdd(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input sp_indices,\n ::tensorflow::Input sp_values,\n ::tensorflow::Input sp_shape,\n ::tensorflow::Input dense\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]