# เทนเซอร์โฟลว์:: ปฏิบัติการ:: ที่ไหน

#include <array_ops.h>

ปรับรูปร่างเทนเซอร์เชิงปริมาณตามตัวเลือก Reshape

## สรุป

Arguments:
* scope: A Scope object
* shape: Defines the shape of the output tensor.
* input_min: The minimum value of the input.
* input_max: The maximum value of the input.

Returns:
* Output output
* Output output_min: This value is copied from input_min.
* Output output_max: This value is copied from input_max. */
class QuantizedReshape {
public:
QuantizedReshape(const tensorflow::Scope& scope, tensorflow::Input tensor,
tensorflow::Input shape, tensorflow::Input input_min,
tensorflow::Input input_max);

Operation operation;
tensorflow::Output output;
tensorflow::Output output_min;
tensorflow::Output output_max;
};

/** Returns the rank of a tensor.

This operation returns an integer representing the rank of input.

For example:

# shape of tensor 't' is [2, 2, 3]

rank(t) ==> 3

**Note**: The rank of a tensor is not the same as the rank of a matrix. The rank
of a tensor is the number of indices required to uniquely select each element
of the tensor. Rank is also known as "order", "degree", or "ndims."

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
class Rank {
public:
Rank(const ::tensorflow::Scope& scope, ::tensorflow::Input input);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same values
as tensor with shape shape.

If one component of 1-D tensor shape is the special value -1, the size of that
dimension is computed so that the total size remains constant.  In particular, a
shape of [-1] flattens into 1-D.  At most one component of shape may be
unknown.

The shape must be 1-D and the operation returns a tensor with shape
shape filled with the values of tensor. In this case, the number of elements
implied by shape must be the same as the number of elements in tensor.

It is an error if shape is not 1-D.

For example:

# tensor 't' has shape [9]

reshape(t, [3, 3]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

# tensor 't' has shape [2, 2, 2]

reshape(t, [2, 4]) ==> [[1, 1, 2, 2], [3, 3, 4, 4]]

# pass '[-1]' to flatten 't'

reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

# -1 is inferred to be 9:

reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]]

# -1 is inferred to be 2:

reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]]

# -1 is inferred to be 3:

reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]

# shape [] reshapes to a scalar

reshape(t, []) ==> 7

Arguments:
* scope: A Scope object
* shape: Defines the shape of the output tensor.

Returns:
* Output: The output tensor. */
class Reshape {
public:
Reshape(const tensorflow::Scope& scope, tensorflow::Input tensor,
tensorflow::Input shape);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Assign value to the sliced l-value reference of ref.

The values of value are assigned to the positions in the variable
ref that are selected by the slice parameters. The slice parameters
begin, end, strides, etc. work exactly as in StridedSlice.

NOTE this op currently does not support broadcasting and so value's
shape must be exactly the shape produced by the slice of ref.

Arguments:
* scope: A Scope object

Returns:
* the created Operation */
class ResourceStridedSliceAssign {
public:
/// Optional attribute setters for ResourceStridedSliceAssign
struct Attrs {
/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

};
ResourceStridedSliceAssign(const tensorflow::Scope& scope,
tensorflow::Input ref, tensorflow::Input begin,
tensorflow::Input end, tensorflow::Input
strides, tensorflow::Input value);
ResourceStridedSliceAssign(const tensorflow::Scope& scope,
tensorflow::Input ref, tensorflow::Input begin,
tensorflow::Input end, tensorflow::Input
strides, tensorflow::Input value, const
ResourceStridedSliceAssign::Attrs& attrs);
operator ::tensorflow::Operation() const { return operation; }

}
}
}
}
}

Operation operation;
};

/** Reverses variable length slices.

This op first slices input along the dimension batch_dim, and for each
slice i, reverses the first seq_lengths[i] elements along
the dimension seq_dim.

The elements of seq_lengths must obey seq_lengths[i] <= input.dims[seq_dim],
and seq_lengths must be a vector of length input.dims[batch_dim].

The output slice i along dimension batch_dim is then given by input
slice i, with the first seq_lengths[i] slices along dimension
seq_dim reversed.

For example:

# Given this:

batch_dim = 0 seq_dim = 1 input.dims = (4, 8, ...) seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:

output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...] output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...] output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...] output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

# while entries past seq_lens are copied through:

output[0, 7:, :, ...] = input[0, 7:, :, ...] output[1, 2:, :, ...] = input[1, 2:, :, ...] output[2, 3:, :, ...] = input[2, 3:, :, ...] output[3, 2:, :, ...] = input[3, 2:, :, ...]

In contrast, if:

# Given this:

batch_dim = 2 seq_dim = 0 input.dims = (8, ?, 4, ...) seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:

output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...] output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...] output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...] output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...]

# while entries past seq_lens are copied through:

output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...] output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...] output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...] output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...]

Arguments:
* scope: A Scope object
* input: The input to reverse.
* seq_lengths: 1-D with length input.dims(batch_dim) and
max(seq_lengths) <= input.dims(seq_dim)
* seq_dim: The dimension which is partially reversed.

Optional attributes (see Attrs):
* batch_dim: The dimension along which reversal is performed.

Returns:
* Output: The partially reversed input. It has the same shape as input. */
class ReverseSequence {
public:
/// Optional attribute setters for ReverseSequence
struct Attrs {
/** The dimension along which reversal is performed.

Defaults to 0 */
TF_MUST_USE_RESULT Attrs BatchDim(int64 x) {
Attrs ret = *this;
ret.batch_dim_ = x;
return ret;
}

int64 batch_dim_ = 0;
};
ReverseSequence(const tensorflow::Scope& scope, tensorflow::Input input,
tensorflow::Input seq_lengths, int64 seq_dim);
ReverseSequence(const tensorflow::Scope& scope, tensorflow::Input input,
tensorflow::Input seq_lengths, int64 seq_dim, const
ReverseSequence::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

static Attrs BatchDim(int64 x) {
return Attrs().BatchDim(x);
}

Operation operation;
tensorflow::Output output;
};

/** Reverses specific dimensions of a tensor.

NOTE tf.reverse has now changed behavior in preparation for 1.0.
tf.reverse_v2 is currently an alias that will be deprecated before TF 1.0.

Given a tensor, and a int32 tensor axis representing the set of
dimensions of tensor to reverse. This operation reverses each dimension
i for which there exists j s.t. axis[j] == i.

tensor can have up to 8 dimensions. The number of dimensions specified
in axis may be 0 or more entries. If an index is specified more than
once, a InvalidArgument error is raised.

For example:

# 'dims' is [3] or 'dims' is [-1]

reverse(t, dims) ==> [[[[ 3, 2, 1, 0], [ 7, 6, 5, 4], [ 11, 10, 9, 8]], [[15, 14, 13, 12], [19, 18, 17, 16], [23, 22, 21, 20]]]]

# 'dims' is '[1]' (or 'dims' is '[-3]')

reverse(t, dims) ==> [[[[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23] [[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]]]

# 'dims' is '[2]' (or 'dims' is '[-2]')

reverse(t, dims) ==> [[[[8, 9, 10, 11], [4, 5, 6, 7], [0, 1, 2, 3]] [[20, 21, 22, 23], [16, 17, 18, 19], [12, 13, 14, 15]]]]

Arguments:
* scope: A Scope object
* tensor: Up to 8-D.
* axis: 1-D. The indices of the dimensions to reverse. Must be in the range
[-rank(tensor), rank(tensor)).

Returns:
* Output: The same shape as tensor. */
class Reverse {
public:
Reverse(const tensorflow::Scope& scope, tensorflow::Input tensor,
tensorflow::Input axis);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Scatter updates into a new tensor according to indices.

Creates a new tensor by applying sparse updates to individual values or
slices within a tensor (initially zero for numeric, empty for string) of
the given shape according to indices.  This operator is the inverse of the
tf.gather_nd operator which extracts values or slices from a given tensor.

This operation is similar to tensor_scatter_add, except that the tensor is
zero-initialized. Calling tf.scatter_nd(indices, values, shape) is identical
to tensor_scatter_add(tf.zeros(shape, values.dtype), indices, values)

If indices contains duplicates, then their updates are accumulated (summed).

**WARNING**: The order in which updates are applied is nondeterministic, so the
output will be nondeterministic if indices contains duplicates -- because
of some numerical approximation issues, numbers summed in different order
may yield different results.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:

indices.shape[-1] <= shape.rank

The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape

indices.shape[:-1] + shape[indices.shape[-1]:]

The simplest form of scatter is to insert individual elements in a tensor by
index. For example, say we want to insert 4 scattered elements in a rank-1
tensor with 8 elements.

In Python, this scatter operation would look like this:

python indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) shape = tf.constant([8]) scatter = tf.scatter_nd(indices, updates, shape) print(scatter)

The resulting tensor would look like this:

[0, 11, 0, 10, 9, 0, 0, 12]

We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter operation would look like this:

python indices = tf.constant([[0], [2]]) updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]) shape = tf.constant([4, 4, 4]) scatter = tf.scatter_nd(indices, updates, shape) print(scatter)

The resulting tensor would look like this:

[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.

Arguments:
* scope: A Scope object
* indices: Index tensor.
* shape: 1-D. The shape of the resulting tensor.

Returns:
* Output: A new tensor with the given shape and updates applied according
to the indices. */
class ScatterNd {
public:
ScatterNd(const tensorflow::Scope& scope, tensorflow::Input indices,
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Applies sparse addition to input using individual values or slices

from updates according to indices indices.  The updates are non-aliasing:
input is only modified in-place if no other operations will use it.
Otherwise, a copy of input is made.  This operation has a gradient with
respect to both input and updates.

input is a Tensor with rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into input.
It must be shape $$[d_0, ..., d_{Q-2}, K]$$ where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or (P-K)-dimensional slices
(if K < P) along the Kth dimension of input.

updates is Tensor of rank Q-1+P-K with shape:

$$[d_0, ..., d_{Q-2}, input.shape[K], ..., input.shape[P-1]].$$

For example, say we want to add 4 scattered elements to a rank-1 tensor to 8
elements. In Python, that addition would look like this:

input = tf.constant([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
with tf.Session() as sess:
print(sess.run(output))

The resulting value output would look like this:

[1, 13, 3, 14, 14, 6, 7, 20]

See tf.scatter_nd for more details about how to make updates to slices.

Arguments:
* scope: A Scope object
* input: A Tensor.
* indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into input.
* updates: A Tensor. Must have the same type as ref. A tensor of updated values
to add to input.

Returns:
* Output: A Tensor with the same shape as input, containing values of input
updated with updates. */
public:
input, tensorflow::Input indices, tensorflow::Input
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape of input.

For example:

# 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]

shape(t) ==> [2, 2, 3]

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
class Shape {
public:
/// Optional attribute setters for Shape
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutType(DataType x) {
Attrs ret = *this;
ret.out_type_ = x;
return ret;
}

DataType out_type_ = DT_INT32;
};
Shape(const ::tensorflow::Scope& scope, ::tensorflow::Input input);
Shape(const tensorflow::Scope& scope, tensorflow::Input input, const
Shape::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

static Attrs OutType(DataType x) {
return Attrs().OutType(x);
}

Operation operation;
tensorflow::Output output;
};

/** Returns shape of tensors.

This operation returns N 1-D integer tensors representing shape of input[i]s.

Arguments:
* scope: A Scope object

Returns:
* OutputList: The output tensor. */
class ShapeN {
public:
/// Optional attribute setters for ShapeN
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutType(DataType x) {
Attrs ret = *this;
ret.out_type_ = x;
return ret;
}

DataType out_type_ = DT_INT32;
};
ShapeN(const ::tensorflow::Scope& scope, ::tensorflow::InputList input);
ShapeN(const tensorflow::Scope& scope, tensorflow::InputList input, const
ShapeN::Attrs& attrs);
tensorflow::Output operator[](size_t index) const { return output[index]; }

static Attrs OutType(DataType x) {
return Attrs().OutType(x);
}

Operation operation;
::tensorflow::OutputList output;
};

/** Returns the size of a tensor.

This operation returns an integer representing the number of elements in
input.

For example:

# 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]

size(t) ==> 12

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
class Size {
public:
/// Optional attribute setters for Size
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutType(DataType x) {
Attrs ret = *this;
ret.out_type_ = x;
return ret;
}

DataType out_type_ = DT_INT32;
};
Size(const ::tensorflow::Scope& scope, ::tensorflow::Input input);
Size(const tensorflow::Scope& scope, tensorflow::Input input, const
Size::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

static Attrs OutType(DataType x) {
return Attrs().OutType(x);
}

Operation operation;
tensorflow::Output output;
};

/** Return a slice from 'input'.

The output tensor is a tensor with dimensions described by 'size'
whose values are extracted from 'input' starting at the offsets in
'begin'.

*Requirements*:
0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n)

Arguments:
* scope: A Scope object
* begin: begin[i] specifies the offset into the 'i'th dimension of
'input' to slice from.
* size: size[i] specifies the number of elements of the 'i'th dimension
of 'input' to slice. If size[i] is -1, all remaining elements in dimension
i are included in the slice (i.e. this is equivalent to setting
size[i] = input.dim_size(i) - begin[i]).

Returns:
* Output: The output tensor. */
class Slice {
public:
Slice(const tensorflow::Scope& scope, tensorflow::Input input,
tensorflow::Input begin, tensorflow::Input size);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Returns a copy of the input tensor.

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
class Snapshot {
public:
Snapshot(const ::tensorflow::Scope& scope, ::tensorflow::Input input);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** SpaceToBatch for 4-D tensors of type T.

This is a legacy version of the more general SpaceToBatchND.

Zero-pads and then rearranges (permutes) blocks of spatial data into batch.
More specifically, this op outputs a copy of the input tensor where values from
the height and width dimensions are moved to the batch dimension. After
the zero-padding, both height and width of the input must be divisible by the
block size.

Arguments:
* scope: A Scope object
* input: 4-D with shape [batch, height, width, depth].
* paddings: 2-D tensor of non-negative integers with shape [2, 2]. It specifies
the padding of the input with zeros across the spatial dimensions as follows:

The effective spatial dimensions of the zero-padded input tensor will be:

The attr block_size must be greater than one. It indicates the block size.

* Non-overlapping blocks of size block_size x block size in the height and
width dimensions are rearranged into the batch dimension at each location.
* The batch of the output tensor is batch * block_size * block_size.

The shape of the output will be:

depth]

Some examples:

(1) For the following input of shape [1, 2, 2, 1] and block_size of 2:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3] and block_size of 2:

x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]

(3) For the following input of shape [1, 4, 4, 1] and block_size of 2:

x = [[[[1], [2], [3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1] and block_size of 2:

x = [[[[1], [2], [3], [4]], [[5], [6], [7], [8]]], [[[9], [10], [11], [12]], [[13], [14], [15], [16]]]]

The output tensor has shape [8, 1, 2, 1] and value:

x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into
regular convolution.

Returns:
* Output: The output tensor. */
class SpaceToBatch {
public:
SpaceToBatch(const tensorflow::Scope& scope, tensorflow::Input input,
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** SpaceToBatch for N-D tensors of type T.

This operation divides "spatial" dimensions [1, ..., M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
"batch" dimension (0) such that in the output, the spatial dimensions
[1, ..., M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position.  Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings.  See below for a
precise description.

Arguments:
* scope: A Scope object
* input: N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.
* block_shape: 1-D with shape [M], all values must be >= 1.
* paddings: 2-D with shape [M, 2], all values must be >= 0.
paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i.  It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.

This operation is equivalent to the following steps:

1. Zero-pad the start and end of dimensions [1, ..., M] of the
input according to paddings to produce padded of shape padded_shape.

2. Reshape padded to reshaped_padded of shape:

[batch] +
block_shape[0],
...,
block_shape[M-1]] +
remaining_shape

3. Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:

block_shape +
[batch] +
...,
remaining_shape

4. Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:

[batch * prod(block_shape)] +
...,
remaining_shape

Some examples:

(1) For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]

(3) For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2], [3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:

x = [[[[1], [2], [3], [4]], [[5], [6], [7], [8]]], [[[9], [10], [11], [12]], [[13], [14], [15], [16]]]]

The output tensor has shape [8, 1, 3, 1] and value:

x = [[[[0], [1], [3]]], [[[0], [9], [11]]], [[[0], [2], [4]]], [[[0], [10], [12]]], [[[0], [5], [7]]], [[[0], [13], [15]]], [[[0], [6], [8]]], [[[0], [14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into
regular convolution.

Returns:
* Output: The output tensor. */
class SpaceToBatchND {
public:
SpaceToBatchND(const tensorflow::Scope& scope, tensorflow::Input input,
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** SpaceToDepth for tensors of type T.

Rearranges blocks of spatial data, into depth. More specifically,
this op outputs a copy of the input tensor where values from the height
and width dimensions are moved to the depth dimension.
The attr block_size indicates the input block size.

* Non-overlapping blocks of size block_size x block size are rearranged
into depth at each location.
* The depth of the output tensor is block_size * block_size * input_depth.
* The Y, X coordinates within each block of the input become the high order
component of the output channel index.
* The input tensor's height and width must be divisible by block_size.

The data_format attr specifies the layout of the input and output tensors
with the following options:
"NHWC": [ batch, height, width, channels ]
"NCHW": [ batch, channels, height, width ]
"NCHW_VECT_C":
qint8 [ batch, channels / 4, height, width, 4 ]

It is useful to consider the operation as transforming a 6-D Tensor.
e.g. for data_format = NHWC,
Each element in the input tensor can be specified via 6 coordinates,
ordered by decreasing memory layout significance as:
n,oY,bY,oX,bX,iC  (where n=batch index, oX, oY means X or Y coordinates
within the output image, bX, bY means coordinates
within the input block, iC means input channels).
The output would be a transpose to the following layout:
n,oY,oX,bY,bX,iC

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given an input of shape [1, 2, 2, 1], data_format = "NHWC" and
block_size = 2:

x = [[[[1], [2]], [[3], [4]]]]

This operation will output a tensor of shape [1, 1, 1, 4]:

[[[[1, 2, 3, 4]]]]

Here, the input has a batch of 1 and each batch element has shape [2, 2, 1],
the corresponding output will have a single element (i.e. width and height are
both 1) and will have a depth of 4 channels (1 * block_size * block_size).
The output element shape is [1, 1, 4].

For an input tensor with larger depth, here of shape [1, 2, 2, 3], e.g.

x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]]

This operation, for block_size of 2, will return the following tensor of shape
[1, 1, 1, 12]

[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

Similarly, for the following input of shape [1 4 4 1], and a block size of 2:

x = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]]

the operator will return the following tensor of shape [1 2 2 4]:

x = [[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]]

Arguments:
* scope: A Scope object
* block_size: The size of the spatial block.

Returns:
* Output: The output tensor. */
class SpaceToDepth {
public:
/// Optional attribute setters for SpaceToDepth
struct Attrs {
/// Defaults to "NHWC"
TF_MUST_USE_RESULT Attrs DataFormat(StringPiece x) {
Attrs ret = *this;
ret.data_format_ = x;
return ret;
}

StringPiece data_format_ = "NHWC";
};
SpaceToDepth(const tensorflow::Scope& scope, tensorflow::Input input, int64
block_size);
SpaceToDepth(const tensorflow::Scope& scope, tensorflow::Input input, int64
block_size, const SpaceToDepth::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

static Attrs DataFormat(StringPiece x) {
return Attrs().DataFormat(x);
}

Operation operation;
tensorflow::Output output;
};

/** Splits a tensor into num_split tensors along one dimension.

Arguments:
* scope: A Scope object
* axis: 0-D.  The dimension along which to split.  Must be in the range
[-rank(value), rank(value)).
* value: The tensor to split.
* num_split: The number of ways to split.  Must evenly divide
value.shape[split_dim].

Returns:
* OutputList: They are identically shaped tensors, whose shape matches that of value
except along axis, where their sizes are
values.shape[split_dim] / num_split. */
class Split {
public:
Split(const tensorflow::Scope& scope, tensorflow::Input axis,
tensorflow::Input value, int64 num_split);
tensorflow::Output operator[](size_t index) const { return output[index]; }

Operation operation;
::tensorflow::OutputList output;
};

/** Splits a tensor into num_split tensors along one dimension.

Arguments:
* scope: A Scope object
* value: The tensor to split.
* size_splits: list containing the sizes of each output tensor along the split
dimension. Must sum to the dimension of value along split_dim.
Can contain one -1 indicating that dimension is to be inferred.
* axis: 0-D.  The dimension along which to split.  Must be in the range
[-rank(value), rank(value)).

Returns:
* OutputList: Tensors whose shape matches that of value
except along axis, where their sizes are
size_splits[i]. */
class SplitV {
public:
SplitV(const tensorflow::Scope& scope, tensorflow::Input value,
tensorflow::Input size_splits, tensorflow::Input axis, int64
num_split);
tensorflow::Output operator[](size_t index) const { return output[index]; }

Operation operation;
::tensorflow::OutputList output;
};

/** Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don't want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
axis.

For example:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]

shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]

shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Arguments:
* scope: A Scope object
* input: The input to squeeze.

Optional attributes (see Attrs):
* axis: If specified, only squeezes the dimensions listed. The dimension
index starts at 0. It is an error to squeeze a dimension that is not 1. Must
be in the range [-rank(input), rank(input)).

Returns:
* Output: Contains the same data as input, but has one or more dimensions of
size 1 removed. */
class Squeeze {
public:
/// Optional attribute setters for Squeeze
struct Attrs {
/** If specified, only squeezes the dimensions listed. The dimension
index starts at 0. It is an error to squeeze a dimension that is not 1. Must
be in the range [-rank(input), rank(input)).

Defaults to [] */
TF_MUST_USE_RESULT Attrs Axis(const gtl::ArraySlice& x) {
Attrs ret = *this;
ret.axis_ = x;
return ret;
}

gtl::ArraySlice axis_ = {};
};
Squeeze(const ::tensorflow::Scope& scope, ::tensorflow::Input input);
Squeeze(const tensorflow::Scope& scope, tensorflow::Input input, const
Squeeze::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

static Attrs Axis(const gtl::ArraySlice& x) {
return Attrs().Axis(x);
}

Operation operation;
tensorflow::Output output;
};

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account.  Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified 'loss' by recursively
finding out inputs that contributed to its computation.  If you insert this op
in the graph it inputs are masked from the gradient generator.  They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:

*  The *EM* algorithm where the *M-step* should not involve backpropagation
through the output of the *E-step*.
*  Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not backpropagate
through the graph that generated the samples from the model.
example generation process.

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
public:
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Return a strided slice from input.

Note, most python users will want to use the Python Tensor.__getitem__
or Variable.__getitem__ rather than this op directly.

The goal of this op is to produce a new tensor with a subset of
the elements from the n dimensional input tensor. The subset is chosen using
a sequence of m sparse range specifications encoded into the arguments
of this function. Note, in some cases
m could be equal to n, but this need not be the case. Each
range specification entry can be one of the following:

• An ellipsis (...). Ellipses are used to imply zero or more dimensions of full-dimension selection and are produced using ellipsis_mask. For example, foo[...] is the identity slice.

• A new axis. This is used to insert a new shape=1 dimension and is produced using new_axis_mask. For example, foo[:, ...] where foo is shape (3, 4) produces a (1, 3, 4) tensor.

• A range begin:end:stride. This is used to specify how much to choose from a given dimension. stride can be any integer but 0. begin is an integer which represents the index of the first value to select while end represents the index of the last value to select. The number of values selected in each dimension is end - begin if stride > 0 and begin - end if stride < 0. begin and end can be negative where -1 is the last element, -2 is the second to last. begin_mask controls whether to replace the explicitly given begin with an implicit effective value of 0 if stride > 0 and -1 if stride < 0. end_mask is analogous but produces the number required to create the largest open interval. For example, given a shape (3,) tensor foo[:], the effective begin and end are 0 and 3. Do not assume this is equivalent to foo[0:-1] which has an effective begin and end of 0 and 2. Another example is foo[-2::-1] which reverses the first dimension of a tensor while dropping the last two (in the original order elements). For example foo = [1,2,3,4]; foo[-2::-1] is [4,3].

• A single index. This is used to keep only elements that have a given index. For example (foo[2, :] on a shape (5,6) tensor produces a shape (6,) tensor. This is encoded in begin and end and shrink_axis_mask.

Each conceptual range specification is encoded in the op's argument. This
encoding is best understand by considering a non-trivial example. In
particular,
foo[1, 2:4, None, ..., :-3:-1, :] will be encoded as

begin = [1, 2, x, x, 0, x] # x denotes don't care (usually 0) end = [2, 4, x, x, -3, x] strides = [1, 1, x, x, -1, 1] begin_mask = 1<<4 | 1 << 5 = 48 end_mask = 1<<5 = 32 ellipsis_mask = 1<<3 = 8 new_axis_mask = 1<<2 4 shrink_axis_mask = 1<<0

In this case if foo.shape is (5, 5, 5, 5, 5, 5) the final shape of
the slice becomes (2, 1, 5, 5, 2, 5).
Let us walk step by step through each argument specification.

1.  The first argument in the example slice is turned into begin = 1 and
end = begin + 1 = 2. To disambiguate from the original spec 2:4 we
also set the appropriate bit in shrink_axis_mask.

2. 2:4 is contributes 2, 4, 1 to begin, end, and stride. All masks have
zero bits contributed.

3. None is a synonym for tf.newaxis. This means insert a dimension of size 1
dimension in the final shape. Dummy values are contributed to begin,
end and stride, while the new_axis_mask bit is set.

4. ... grab the full ranges from as many dimensions as needed to
fully specify a slice for every dimension of the input shape.

5. :-3:-1 shows the use of negative indices. A negative index i associated
with a dimension that has shape s is converted to a positive index
s + i. So -1 becomes s-1 (i.e. the last element). This conversion
is done internally so begin, end and strides receive x, -3, and -1.
The appropriate begin_mask bit is set to indicate the start range is the
full range (ignoring the x).

6. : indicates that the entire contents of the corresponding dimension
is selected. This is equivalent to :: or 0::1. begin, end, and strides
receive 0, 0, and 1, respectively. The appropriate bits in begin_mask and

Requirements:
0 != strides[i] for i in [0, m)ellipsis_mask must be a power of two (only one ellipsis)

Arguments:
* scope: A Scope object
* begin: begin[k] specifies the offset into the kth range specification.
The exact dimension this corresponds to will be determined by context.
Out-of-bounds values will be silently clamped. If the kth bit of
begin_mask then begin[k] is ignored and the full range of the
appropriate dimension is used instead. Negative values causes indexing
to start from the highest element e.g. If foo==[1,2,3] then foo[-1]==3.
* end: end[i] is like begin with the exception that end_mask is
used to determine full ranges.
* strides: strides[i] specifies the increment in the ith specification
after extracting a given element. Negative indices will reverse
the original order. Out or range values are
clamped to [0,dim[i]) if slice[i]>0 or [-1,dim[i]-1] if slice[i] < 0

Optional attributes (see Attrs):
* begin_mask: a bitmask where a bit i being 1 means to ignore the begin
value and instead use the largest interval possible. At runtime
begin[i] will be replaced with [0, n-1) if stride[i] > 0 or
[-1, n-1] if stride[i] < 0
* ellipsis_mask: a bitmask where bit i being 1 means the ith
position is actually an ellipsis. One bit at most can be 1.
If ellipsis_mask == 0, then an implicit ellipsis mask of 1 << (m+1)
is provided. This means that foo[3:5] == foo[3:5, ...]. An ellipsis
implicitly creates as many range specifications as necessary to fully
specify the sliced range for every dimension. For example for a 4-dimensional
tensor foo the slice foo[2, ..., 5:8] implies foo[2, :, :, 5:8].
* new_axis_mask: a bitmask where bit i being 1 means the ith
specification creates a new shape 1 dimension. For example
foo[:4, tf.newaxis, :2] would produce a shape (4, 1, 2) tensor.
specification should shrink the dimensionality. begin and end
must imply a slice of size 1 in the dimension. For example in
python one might do foo[:, 3, :] which would result in

Returns:
* Output: The output tensor. */
class StridedSlice {
public:
/// Optional attribute setters for StridedSlice
struct Attrs {
/** a bitmask where a bit i being 1 means to ignore the begin
value and instead use the largest interval possible. At runtime
begin[i] will be replaced with [0, n-1) if stride[i] > 0 or
[-1, n-1] if stride[i] < 0

Defaults to 0 */
Attrs ret = *this;
return ret;
}

Defaults to 0 */
Attrs ret = *this;
return ret;
}

/** a bitmask where bit i being 1 means the ith
position is actually an ellipsis. One bit at most can be 1.
If ellipsis_mask == 0, then an implicit ellipsis mask of 1 << (m+1)
is provided. This means that foo[3:5] == foo[3:5, ...]. An ellipsis
implicitly creates as many range specifications as necessary to fully
specify the sliced range for every dimension. For example for a 4-dimensional
tensor foo the slice foo[2, ..., 5:8] implies foo[2, :, :, 5:8].

Defaults to 0 */
Attrs ret = *this;
return ret;
}

/** a bitmask where bit i being 1 means the ith
specification creates a new shape 1 dimension. For example
foo[:4, tf.newaxis, :2] would produce a shape (4, 1, 2) tensor.

Defaults to 0 */
Attrs ret = *this;
return ret;
}

/** a bitmask where bit i implies that the ith
specification should shrink the dimensionality. begin and end
must imply a slice of size 1 in the dimension. For example in
python one might do foo[:, 3, :] which would result in

Defaults to 0 */
Attrs ret = *this;
return ret;
}

};
StridedSlice(const tensorflow::Scope& scope, tensorflow::Input input,
tensorflow::Input begin, tensorflow::Input end,
tensorflow::Input strides);
StridedSlice(const tensorflow::Scope& scope, tensorflow::Input input,
tensorflow::Input begin, tensorflow::Input end,
tensorflow::Input strides, const StridedSlice::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

}
}
}
}
}

Operation operation;
tensorflow::Output output;
};

/** Assignvalue to the sliced l-value reference of ref.

The values of value are assigned to the positions in the variable
ref that are selected by the slice parameters. The slice parameters
begin, end, strides, etc. work exactly as in StridedSlice.

NOTE this op currently does not support broadcasting and so value's
shape must be exactly the shape produced by the slice of ref.

Arguments:
* scope: A Scope object

Returns:
* Output: The output_ref tensor. */
class StridedSliceAssign {
public:
/// Optional attribute setters for StridedSliceAssign
struct Attrs {
/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

};
StridedSliceAssign(const tensorflow::Scope& scope, tensorflow::Input ref,
tensorflow::Input begin, tensorflow::Input end,
tensorflow::Input strides, tensorflow::Input value);
StridedSliceAssign(const tensorflow::Scope& scope, tensorflow::Input ref,
tensorflow::Input begin, tensorflow::Input end,
tensorflow::Input strides, tensorflow::Input value,
const StridedSliceAssign::Attrs& attrs);
operator ::tensorflow::Output() const { return output_ref; }
operator ::tensorflow::Input() const { return output_ref; }
::tensorflow::Node* node() const { return output_ref.node(); }

}
}
}
}
}

Operation operation;
tensorflow::Output output_ref;
};

/** Returns the gradient of StridedSlice.

Since StridedSlice cuts out pieces of its input which is size
shape, its gradient will have the same shape (which is passed here
as shape). The gradient will be zero in any element that the slice
does not select.

Arguments are the same as StridedSliceGrad with the exception that
dy is the input gradient to be propagated and shape is the
shape of StridedSlice's input.

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
public:
/// Optional attribute setters for StridedSliceGrad
struct Attrs {
/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

};
tensorflow::Input begin, tensorflow::Input end,
tensorflow::Input strides, tensorflow::Input dy);
tensorflow::Input begin, tensorflow::Input end,
tensorflow::Input strides, tensorflow::Input dy, const
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

}
}
}
}
}

Operation operation;
tensorflow::Output output;
};

This operation creates a new tensor by adding sparse updates to the passed
in tensor.
are added onto an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:

indices.shape[-1] <= shape.rank

The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape

indices.shape[:-1] + shape[indices.shape[-1]:]

The simplest form of tensor_scatter_add is to add individual elements to a
tensor by index. For example, say we want to add 4 elements in a rank-1
tensor with 8 elements.

In Python, this scatter add operation would look like this:

python indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) tensor = tf.ones([8], dtype=tf.int32) updated = tf.tensor_scatter_nd_add(tensor, indices, updates) print(updated)

The resulting tensor would look like this:

[1, 12, 1, 11, 10, 1, 1, 13]

We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:

python indices = tf.constant([[0], [2]]) updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]) tensor = tf.ones([4, 4, 4],dtype=tf.int32) updated = tf.tensor_scatter_nd_add(tensor, indices, updates) print(updated)

The resulting tensor would look like this:

[[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.

Arguments:
* scope: A Scope object
* tensor: Tensor to copy/update.
* indices: Index tensor.

Returns:
* Output: A new tensor copied from tensor and updates added according to the indices. */
public:
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Subtracts sparse updates from an existing tensor according to indices.

This operation creates a new tensor by subtracting sparse updates from the
passed in tensor.
This operation is very similar to tf.scatter_nd_sub, except that the updates
are subtracted from an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:

indices.shape[-1] <= shape.rank

The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape

indices.shape[:-1] + shape[indices.shape[-1]:]

The simplest form of tensor_scatter_sub is to subtract individual elements
from a tensor by index. For example, say we want to insert 4 scattered elements
in a rank-1 tensor with 8 elements.

In Python, this scatter subtract operation would look like this:

python indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) tensor = tf.ones([8], dtype=tf.int32) updated = tf.tensor_scatter_nd_sub(tensor, indices, updates) print(updated)

The resulting tensor would look like this:

[1, -10, 1, -9, -8, 1, 1, -11]

We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:

python indices = tf.constant([[0], [2]]) updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]) tensor = tf.ones([4, 4, 4],dtype=tf.int32) updated = tf.tensor_scatter_nd_sub(tensor, indices, updates) print(updated)

The resulting tensor would look like this:

[[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.

Arguments:
* scope: A Scope object
* tensor: Tensor to copy/update.
* indices: Index tensor.

Returns:
* Output: A new tensor copied from tensor and updates subtracted according to the indices. */
class TensorScatterSub {
public:
TensorScatterSub(const tensorflow::Scope& scope, tensorflow::Input tensor,
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Scatter updates into an existing tensor according to indices.

This operation creates a new tensor by applying sparse updates to the passed
in tensor.
This operation is very similar to tf.scatter_nd, except that the updates are
scattered onto an existing tensor (as opposed to a zero-tensor). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

If indices contains duplicates, then their updates are accumulated (summed).

**WARNING**: The order in which updates are applied is nondeterministic, so the
output will be nondeterministic if indices contains duplicates -- because
of some numerical approximation issues, numbers summed in different order
may yield different results.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:

indices.shape[-1] <= shape.rank

The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape

indices.shape[:-1] + shape[indices.shape[-1]:]

The simplest form of scatter is to insert individual elements in a tensor by
index. For example, say we want to insert 4 scattered elements in a rank-1
tensor with 8 elements.

In Python, this scatter operation would look like this:

>>> indices = tf.constant([[4], [3], [1], [7]])
>>> updates = tf.constant([9, 10, 11, 12])
>>> tensor = tf.ones([8], dtype=tf.int32)
tf.Tensor([ 1 11  1 10  9  1  1 12], shape=(8,), dtype=int32)

We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter operation would look like this:

>>> indices = tf.constant([[0], [2]])
>>> updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
...                         [7, 7, 7, 7], [8, 8, 8, 8]],
...                        [[5, 5, 5, 5], [6, 6, 6, 6],
...                         [7, 7, 7, 7], [8, 8, 8, 8]]])
>>> tensor = tf.ones([4, 4, 4], dtype=tf.int32)
[[[5 5 5 5]
[6 6 6 6]
[7 7 7 7]
[8 8 8 8]]
[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]
[[5 5 5 5]
[6 6 6 6]
[7 7 7 7]
[8 8 8 8]]
[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]]

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.

Arguments:
* scope: A Scope object
* tensor: Tensor to copy/update.
* indices: Index tensor.

Returns:
* Output: A new tensor with the given shape and updates applied according
to the indices. */
class TensorScatterUpdate {
public:
TensorScatterUpdate(const tensorflow::Scope& scope, tensorflow::Input
tensor, tensorflow::Input indices, tensorflow::Input
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Assign value to the sliced l-value reference of input.

The values of value are assigned to the positions in the tensor input that
are selected by the slice parameters. The slice parameters begin end
strides etc. work exactly as in StridedSlice.

NOTE this op currently does not support broadcasting and so value's shape
must be exactly the shape produced by the slice of input.

Arguments:
* scope: A Scope object

Returns:
* Output: The output tensor. */
class TensorStridedSliceUpdate {
public:
/// Optional attribute setters for TensorStridedSliceUpdate
struct Attrs {
/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

/// Defaults to 0
Attrs ret = *this;
return ret;
}

};
TensorStridedSliceUpdate(const tensorflow::Scope& scope, tensorflow::Input
input, tensorflow::Input begin, tensorflow::Input
end, tensorflow::Input strides, tensorflow::Input
value);
TensorStridedSliceUpdate(const tensorflow::Scope& scope, tensorflow::Input
input, tensorflow::Input begin, tensorflow::Input
end, tensorflow::Input strides, tensorflow::Input
value, const TensorStridedSliceUpdate::Attrs& attrs);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

}
}
}
}
}

Operation operation;
tensorflow::Output output;
};

/** Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times.
The output tensor's i'th dimension has input.dims(i) * multiples[i] elements,
and the values of input are replicated multiples[i] times along the 'i'th
dimension. For example, tiling [a b c d] by [2] produces
[a b c d a b c d].

>>> a = tf.constant([[1,2,3],[4,5,6]], tf.int32)
>>> b = tf.constant([1,2], tf.int32)
>>> tf.tile(a, b)

>>> c = tf.constant([2,1], tf.int32)
>>> tf.tile(a, c)

>>> d = tf.constant([2,2], tf.int32)
>>> tf.tile(a, d)

Arguments:
* scope: A Scope object
* input: 1-D or higher.
* multiples: 1-D. Length must be the same as the number of dimensions in input

Returns:
* Output: The output tensor. */
class Tile {
public:
Tile(const tensorflow::Scope& scope, tensorflow::Input input,
tensorflow::Input multiples);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Shuffle dimensions of x according to a permutation.

The output y has the same rank as x. The shapes of x and y satisfy:
y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]

Arguments:
* scope: A Scope object

Returns:
* Output: The y tensor. */
class Transpose {
public:
Transpose(const tensorflow::Scope& scope, tensorflow::Input x,
tensorflow::Input perm);
operator ::tensorflow::Output() const { return y; }
operator ::tensorflow::Input() const { return y; }
::tensorflow::Node* node() const { return y.node(); }

Operation operation;
tensorflow::Output y;
};

/** Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x; x does not need to be sorted.
This operation also returns a tensor idx the same size as x that contains
the index of each value of x in the unique output y. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

Examples:

# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]

y, idx = unique(x) y ==> [1, 2, 4, 7, 8] idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]

# tensor 'x' is [4, 5, 1, 2, 3, 3, 4, 5]

y, idx = unique(x) y ==> [4, 5, 1, 2, 3] idx ==> [0, 1, 2, 3, 4, 4, 0, 1]

Arguments:
* scope: A Scope object
* x: 1-D.

Returns:
* Output y: 1-D.
* Output idx: 1-D. */
class Unique {
public:
/// Optional attribute setters for Unique
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutIdx(DataType x) {
Attrs ret = *this;
ret.out_idx_ = x;
return ret;
}

DataType out_idx_ = DT_INT32;
};
Unique(const ::tensorflow::Scope& scope, ::tensorflow::Input x);
Unique(const tensorflow::Scope& scope, tensorflow::Input x, const
Unique::Attrs& attrs);

static Attrs OutIdx(DataType x) {
return Attrs().OutIdx(x);
}

Operation operation;
tensorflow::Output y;
tensorflow::Output idx;
};

/** Finds unique elements along an axis of a tensor.

This operation either returns a tensor y containing unique elements
along the axis of a tensor. The returned unique elements is sorted
in the same order as they occur along axis in x.
This operation also returns a tensor idx that is the same size as
the number of the elements in x along the axis dimension. It
contains the index in the unique output y.
In other words, for an 1-D tensor x with axis = None:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]

y, idx = unique(x) y ==> [1, 2, 4, 7, 8] idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]

For an 2-D tensor x with axis = 0:

# [2, 0, 0]]

y, idx = unique(x, axis=0) y ==> [[1, 0, 0], [2, 0, 0]] idx ==> [0, 0, 1]

For an 2-D tensor x with axis = 1:

# [2, 0, 0]]

y, idx = unique(x, axis=1) y ==> [[1, 0], [1, 0], [2, 0]] idx ==> [0, 1, 1]

Arguments:
* scope: A Scope object
* x: A Tensor.
* axis: A Tensor of type int32 (default: None). The axis of the Tensor to
find the unique elements.

Returns:
* Output y: A Tensor. Unique elements along the axis of Tensor x.
* Output idx: A 1-D Tensor. Has the same type as x that contains the index of each
value of x in the output y. */
class UniqueV2 {
public:
/// Optional attribute setters for UniqueV2
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutIdx(DataType x) {
Attrs ret = *this;
ret.out_idx_ = x;
return ret;
}

DataType out_idx_ = DT_INT32;
};
UniqueV2(const tensorflow::Scope& scope, tensorflow::Input x,
tensorflow::Input axis);
UniqueV2(const tensorflow::Scope& scope, tensorflow::Input x,
tensorflow::Input axis, const UniqueV2::Attrs& attrs);

static Attrs OutIdx(DataType x) {
return Attrs().OutIdx(x);
}

Operation operation;
tensorflow::Output y;
tensorflow::Output idx;
};

/** Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. Finally, it returns a third tensor count that
contains the count of each element of y in x. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]

y, idx, count = unique_with_counts(x) y ==> [1, 2, 4, 7, 8] idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] count ==> [2, 1, 3, 1, 2]

Arguments:
* scope: A Scope object
* x: 1-D.

Returns:
* Output y: 1-D.
* Output idx: 1-D.
* Output count: 1-D. */
class UniqueWithCounts {
public:
/// Optional attribute setters for UniqueWithCounts
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutIdx(DataType x) {
Attrs ret = *this;
ret.out_idx_ = x;
return ret;
}

DataType out_idx_ = DT_INT32;
};
UniqueWithCounts(const ::tensorflow::Scope& scope, ::tensorflow::Input x);
UniqueWithCounts(const tensorflow::Scope& scope, tensorflow::Input x, const
UniqueWithCounts::Attrs& attrs);

static Attrs OutIdx(DataType x) {
return Attrs().OutIdx(x);
}

Operation operation;
tensorflow::Output y;
tensorflow::Output idx;
tensorflow::Output count;
};

/** Finds unique elements along an axis of a tensor.

This operation either returns a tensor y containing unique elements
along the axis of a tensor. The returned unique elements is sorted
in the same order as they occur along axis in x.
This operation also returns a tensor idx and a tensor count
that are the same size as the number of the elements in x along the
axis dimension. The idx contains the index in the unique output y
and the count contains the count in the unique output y.
In other words, for an 1-D tensor x with axis = None:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]

y, idx, count = unique_with_counts(x) y ==> [1, 2, 4, 7, 8] idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] count ==> [2, 1, 3, 1, 2]

For an 2-D tensor x with axis = 0:

# [2, 0, 0]]

y, idx, count = unique_with_counts(x, axis=0) y ==> [[1, 0, 0], [2, 0, 0]] idx ==> [0, 0, 1] count ==> [2, 1]

For an 2-D tensor x with axis = 1:

# [2, 0, 0]]

y, idx, count = unique_with_counts(x, axis=1) y ==> [[1, 0], [1, 0], [2, 0]] idx ==> [0, 1, 1] count ==> [1, 2]

Arguments:
* scope: A Scope object
* x: A Tensor.
* axis: A Tensor of type int32 (default: None). The axis of the Tensor to
find the unique elements.

Returns:
* Output y: A Tensor. Unique elements along the axis of Tensor x.
* Output idx: A 1-D Tensor. Has the same type as x that contains the index of each
value of x in the output y.
* Output count: A 1-D Tensor. The count of each value of x in the output y. */
class UniqueWithCountsV2 {
public:
/// Optional attribute setters for UniqueWithCountsV2
struct Attrs {
/// Defaults to DT_INT32
TF_MUST_USE_RESULT Attrs OutIdx(DataType x) {
Attrs ret = *this;
ret.out_idx_ = x;
return ret;
}

DataType out_idx_ = DT_INT32;
};
UniqueWithCountsV2(const tensorflow::Scope& scope, tensorflow::Input x,
tensorflow::Input axis);
UniqueWithCountsV2(const tensorflow::Scope& scope, tensorflow::Input x,
tensorflow::Input axis, const UniqueWithCountsV2::Attrs&
attrs);

static Attrs OutIdx(DataType x) {
return Attrs().OutIdx(x);
}

Operation operation;
tensorflow::Output y;
tensorflow::Output idx;
tensorflow::Output count;
};

/** Unpacks a given dimension of a rank-R tensor into num rank-(R-1) tensors.

Unpacks num tensors from value by chipping it along the axis dimension.
For example, given a tensor of shape (A, B, C, D);

If axis == 0 then the i'th tensor in output is the slice value[i, :, :, :]
and each tensor in output will have shape (B, C, D). (Note that the
dimension unpacked along is gone, unlike split).

If axis == 1 then the i'th tensor in output is the slice value[:, i, :, :]
and each tensor in output will have shape (A, C, D).
Etc.

This is the opposite of pack.

Arguments:
* scope: A Scope object
* value: 1-D or higher, with axis dimension size equal to num.

Optional attributes (see Attrs):
* axis: Dimension along which to unpack.  Negative values wrap around, so the
valid range is [-R, R).

Returns:
* OutputList: The list of tensors unpacked from value. */
class Unstack {
public:
/// Optional attribute setters for Unstack
struct Attrs {
/** Dimension along which to unpack.  Negative values wrap around, so the
valid range is [-R, R).

Defaults to 0 */
TF_MUST_USE_RESULT Attrs Axis(int64 x) {
Attrs ret = *this;
ret.axis_ = x;
return ret;
}

int64 axis_ = 0;
};
Unstack(const ::tensorflow::Scope& scope, ::tensorflow::Input value, int64 num);
Unstack(const tensorflow::Scope& scope, tensorflow::Input value, int64 num,
const Unstack::Attrs& attrs);
tensorflow::Output operator[](size_t index) const { return output[index]; }

static Attrs Axis(int64 x) {
return Attrs().Axis(x);
}

Operation operation;
::tensorflow::OutputList output;
};

/** Converts an array of flat indices into a tuple of coordinate arrays.

Example:

y = tf.unravel_index(indices=[2, 5, 7], dims=[3, 3])

# 7 ==> (2, 1)

y ==> [[0, 1, 2], [2, 2, 1]]

(numpy)
Equivalent to np.unravel_index

Arguments:
* scope: A Scope object
* indices: An 0-D or 1-D int Tensor whose elements are indices into the
flattened version of an array of dimensions dims.
* dims: An 1-D int Tensor. The shape of the array to use for unraveling
indices.

Returns:
* Output: An 2-D (or 1-D if indices is 0-D) tensor where each row has the
same shape as the indices array. */
class UnravelIndex {
public:
UnravelIndex(const tensorflow::Scope& scope, tensorflow::Input indices,
tensorflow::Input dims);
operator ::tensorflow::Output() const { return output; }
operator ::tensorflow::Input() const { return output; }
::tensorflow::Node* node() const { return output.node(); }

Operation operation;
tensorflow::Output output;
};

/** Returns locations of nonzero / true values in a tensor.

This operation returns the coordinates of true elements in condition. The
coordinates are returned in a 2-D tensor where the first dimension (rows)
represents the number of true elements, and the second dimension (columns)
represents the coordinates of the true elements. Keep in mind, the shape of
the output tensor can vary depending on how many true values there are in
condition. Indices are output in row-major order.

For example:

# 'input' has rank of 2, so coordinates have two indices.

where(input) ==> [[0, 0], [1, 0]]

# 'input' has rank of 3, so coordinates have three indices.

where(input) ==> [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1], [2, 1, 1]]

# 'input' has rank of 3, so coordinates have three indices.

where(input) ==> [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1], [2, 1, 1]]

# 'input' has rank of 3, so coordinates have three indices.

where(input) ==> [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1], [2, 1, 1]] 

Arguments:

Returns:

### Constructors and Destructors

Where(const ::tensorflow::Scope & scope, ::tensorflow::Input condition)

index
operation

### Public functions

node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

## Public attributes

### index

::tensorflow::Output index

### การดำเนินการ

Operation operation

## งานสาธารณะ

### ที่ไหน

Where(
const ::tensorflow::Scope & scope,
::tensorflow::Input condition
)

### โหนด

::tensorflow::Node * node() const

### ตัวดำเนินการ::tensorflow::อินพุต

operator::tensorflow::Input() const

### ตัวดำเนินการ::tensorflow::เอาต์พุต

operator::tensorflow::Output() const
[]
[]