संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: पार करना
#include <math_ops.h>
जोड़ीवार क्रॉस उत्पाद की गणना करें।
सारांश
a
और b
आकार एक जैसा होना चाहिए; वे या तो सरल 3-तत्व वाले वैक्टर हो सकते हैं, या कोई भी आकार जहां अंतरतम आयाम 3 है। बाद के मामले में, संबंधित 3-तत्व वाले वैक्टर की प्रत्येक जोड़ी को स्वतंत्र रूप से क्रॉस-गुणा किया जाता है।
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- ए: एक टेंसर जिसमें 3-तत्व वेक्टर होते हैं।
- b: एक अन्य टेंसर,
a
के समान प्रकार और आकार का।
रिटर्न:
-
Output
: a
और b
में वैक्टर का जोड़ीवार क्रॉस उत्पाद।
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::Cross Class Reference\n\ntensorflow::ops::Cross\n======================\n\n`#include \u003cmath_ops.h\u003e`\n\nCompute the pairwise cross product.\n\nSummary\n-------\n\n`a` and `b` must be the same shape; they can either be simple 3-element vectors, or any shape where the innermost dimension is 3. In the latter case, each pair of corresponding 3-element vectors is cross-multiplied independently.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- a: A tensor containing 3-element vectors.\n- b: Another tensor, of same type and shape as `a`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Pairwise cross product of the vectors in `a` and `b`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Cross](#classtensorflow_1_1ops_1_1_cross_1a2d0d3e2d7c97664d9580df02605d9db9)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_cross_1a00b77699cc5ca96059de9e00ba6bad3d) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [product](#classtensorflow_1_1ops_1_1_cross_1af8a37ae245753365a272a83d54cb471f) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_cross_1ac31667b61bd41cbe5ecb0c20852475d9)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_cross_1abafd2b168be8b2ceb0944b95755281eb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_cross_1a2303acdef93919770fab13f504054c34)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### product\n\n```text\n::tensorflow::Output product\n``` \n\nPublic functions\n----------------\n\n### Cross\n\n```gdscript\n Cross(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]