संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
#include <array_ops.h>
images
से patches
निकालें और उन्हें "गहराई" आउटपुट आयाम में डालें।
सारांश
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- छवियाँ: आकार के साथ 4-डी टेंसर
[batch, in_rows, in_cols, depth]
। - ksizes:
images
के प्रत्येक आयाम के लिए स्लाइडिंग विंडो का आकार। - प्रगति: छवियों में दो लगातार पैच के केंद्र कितनी दूर हैं। होना चाहिए:
[1, stride_rows, stride_cols, 1]
। - दरें: होनी चाहिए:
[1, rate_rows, rate_cols, 1]
। यह इनपुट स्ट्राइड है, जो निर्दिष्ट करता है कि इनपुट में लगातार दो पैच नमूने कितनी दूर हैं। patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)
के साथ पैच निकालने के समतुल्य, इसके बाद rates
के एक कारक द्वारा स्थानिक रूप से उनका उप-नमूनाकरण किया जाता है। यह विस्तारित (उर्फ एट्रस) कनवल्शन में rate
के बराबर है। - पैडिंग: उपयोग करने के लिए पैडिंग एल्गोरिदम का प्रकार।
रिटर्न:
-
Output
: आकार के साथ 4-डी टेंसर [batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]
जिसमें "डेप्थ" आयाम में वेक्टराइज़्ड आकार के ksize_rows x ksize_cols x depth
के साथ छवि पैच शामिल हैं। ध्यान दें कि out_rows
और out_cols
आउटपुट पैच के आयाम हैं।
सार्वजनिक गुण
सार्वजनिक समारोह
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::ExtractImagePatches Class Reference\n\ntensorflow::ops::ExtractImagePatches\n====================================\n\n`#include \u003carray_ops.h\u003e`\n\nExtract `patches` from `images` and put them in the \"depth\" output dimension.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- images: 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, in_rows, in_cols, depth]`.\n- ksizes: The size of the sliding window for each dimension of `images`.\n- strides: How far the centers of two consecutive patches are in the images. Must be: `[1, stride_rows, stride_cols, 1]`.\n- rates: Must be: `[1, rate_rows, rate_cols, 1]`. This is the input stride, specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling them spatially by a factor of `rates`. This is equivalent to `rate` in dilated (a.k.a. Atrous) convolutions.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]` containing image patches with size `ksize_rows x ksize_cols x depth` vectorized in the \"depth\" dimension. Note `out_rows` and `out_cols` are the dimensions of the output patches.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExtractImagePatches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a48a27e59bf001d9d0599c4a4ad3abcf9)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` images, const gtl::ArraySlice\u003c int \u003e & ksizes, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_extract_image_patches_1a20f65de6816816f98d46af224137110d) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [patches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a282b671f1a0d52422cd35c75d6819ee1) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_extract_image_patches_1a812a245b3efe85c0003da911be95b891)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_extract_image_patches_1a3dbc12d46ac43f4e5cb6868030310880)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_extract_image_patches_1a7a11be91c9fd8c6b3c5d48ae30630a18)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### patches\n\n```text\n::tensorflow::Output patches\n``` \n\nPublic functions\n----------------\n\n### ExtractImagePatches\n\n```gdscript\n ExtractImagePatches(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input images,\n const gtl::ArraySlice\u003c int \u003e & ksizes,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]