Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
#include <array_ops.h>
images
patches
çıkarın ve bunları "derinlik" çıktı boyutuna yerleştirin.
Özet
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- görüntüler: şekilli 4-D Tensör
[batch, in_rows, in_cols, depth]
. - ksizes:
images
her boyutu için kayan pencerenin boyutu. - adımlar: Ardışık iki parçanın merkezlerinin görüntülerde ne kadar uzakta olduğu. Şunlar olmalıdır:
[1, stride_rows, stride_cols, 1]
. - oranlar: Şu şekilde olmalıdır:
[1, rate_rows, rate_cols, 1]
. Bu, ardışık iki yama örneğinin girişte ne kadar uzakta olduğunu belirten giriş adımıdır. patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)
ile yamaların çıkarılmasına ve ardından bunların bir rates
faktörü ile uzamsal olarak alt örneklenmesine eşdeğerdir. Bu, genişlemiş (aka Atrous) evrişimlerdeki rate
eşdeğerdir. - padding: Kullanılacak dolgu algoritmasının türü.
İade:
-
Output
: "Derinlik" boyutunda vektörleştirilmiş ksize_rows x ksize_cols x depth
sahip görüntü yamalarını içeren [batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]
şeklindeki 4-D Tensör . out_rows
ve out_cols
çıktı yamalarının boyutları olduğuna dikkat edin.
Genel özellikler
Kamu işlevleri
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ExtractImagePatches Class Reference\n\ntensorflow::ops::ExtractImagePatches\n====================================\n\n`#include \u003carray_ops.h\u003e`\n\nExtract `patches` from `images` and put them in the \"depth\" output dimension.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- images: 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, in_rows, in_cols, depth]`.\n- ksizes: The size of the sliding window for each dimension of `images`.\n- strides: How far the centers of two consecutive patches are in the images. Must be: `[1, stride_rows, stride_cols, 1]`.\n- rates: Must be: `[1, rate_rows, rate_cols, 1]`. This is the input stride, specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling them spatially by a factor of `rates`. This is equivalent to `rate` in dilated (a.k.a. Atrous) convolutions.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]` containing image patches with size `ksize_rows x ksize_cols x depth` vectorized in the \"depth\" dimension. Note `out_rows` and `out_cols` are the dimensions of the output patches.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExtractImagePatches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a48a27e59bf001d9d0599c4a4ad3abcf9)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` images, const gtl::ArraySlice\u003c int \u003e & ksizes, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_extract_image_patches_1a20f65de6816816f98d46af224137110d) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [patches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a282b671f1a0d52422cd35c75d6819ee1) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_extract_image_patches_1a812a245b3efe85c0003da911be95b891)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_extract_image_patches_1a3dbc12d46ac43f4e5cb6868030310880)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_extract_image_patches_1a7a11be91c9fd8c6b3c5d48ae30630a18)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### patches\n\n```text\n::tensorflow::Output patches\n``` \n\nPublic functions\n----------------\n\n### ExtractImagePatches\n\n```gdscript\n ExtractImagePatches(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input images,\n const gtl::ArraySlice\u003c int \u003e & ksizes,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]