Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: QuantizedBatchNormWithGlobalNormalization
#include <nn_ops.h>
Nicelenmiş Toplu normalleştirme.
Özet
Bu işlem kullanımdan kaldırıldı ve gelecekte kaldırılacak. tf.nn.batch_normalization
tercih edin.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- t: Bir 4D giriş Tensörü .
- t_min: En düşük nicelenmiş giriş tarafından temsil edilen değer.
- t_max: En yüksek nicelenmiş giriş tarafından temsil edilen değer.
- m: Boyutu t'nin son boyutuyla eşleşen 1D ortalama Tensör . Bu, tf.nn.moments'ın ilk çıktısı veya bunun kayıtlı hareketli ortalamasıdır.
- m_min: En düşük nicelenmiş ortalamayla temsil edilen değer.
- m_max: En yüksek nicelenmiş ortalamayla temsil edilen değer.
- v: t'nin son boyutuyla eşleşen boyutu olan 1 boyutlu varyans Tensörü . Bu, tf.nn.moments'ın ikinci çıktısı veya bunun kaydedilmiş hareketli ortalamasıdır.
- v_min: En düşük nicelenmiş varyansın temsil ettiği değer.
- v_max: En yüksek nicelenmiş varyansın temsil ettiği değer.
- beta: Boyutu t'nin son boyutuyla eşleşen bir 1D beta Tensör . Normalleştirilmiş tensöre eklenecek bir ofset.
- beta_min: En düşük nicelenmiş ofset tarafından temsil edilen değer.
- beta_max: En yüksek nicelenmiş ofset tarafından temsil edilen değer.
- gama: Boyutu t'nin son boyutuyla eşleşen bir 1D gama Tensörü . "scale_after_normalization" doğruysa, bu tensör normalleştirilmiş tensörle çarpılacaktır.
- gamma_min: En düşük nicelenmiş gama ile temsil edilen değer.
- gamma_max: En yüksek nicelenmiş gama ile temsil edilen değer.
- variance_epsilon: 0'a bölünmeyi önlemek için küçük bir kayan sayı.
- Scale_after_normalization: Sonuçta elde edilen tensörün gama ile çarpılması gerekip gerekmediğini belirten bir bool.
İade:
Yapıcılar ve Yıkıcılar |
---|
QuantizedBatchNormWithGlobalNormalization (const :: tensorflow::Scope & scope, :: tensorflow::Input t, :: tensorflow::Input t_min, :: tensorflow::Input t_max, :: tensorflow::Input m, :: tensorflow::Input m_min, :: tensorflow::Input m_max, :: tensorflow::Input v, :: tensorflow::Input v_min, :: tensorflow::Input v_max, :: tensorflow::Input beta, :: tensorflow::Input beta_min, :: tensorflow::Input beta_max, :: tensorflow::Input gamma, :: tensorflow::Input gamma_min, :: tensorflow::Input gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization) |
Genel özellikler
Kamu işlevleri
QuantizedBatchNormWithGlobalNormalization
QuantizedBatchNormWithGlobalNormalization(
const ::tensorflow::Scope & scope,
::tensorflow::Input t,
::tensorflow::Input t_min,
::tensorflow::Input t_max,
::tensorflow::Input m,
::tensorflow::Input m_min,
::tensorflow::Input m_max,
::tensorflow::Input v,
::tensorflow::Input v_min,
::tensorflow::Input v_max,
::tensorflow::Input beta,
::tensorflow::Input beta_min,
::tensorflow::Input beta_max,
::tensorflow::Input gamma,
::tensorflow::Input gamma_min,
::tensorflow::Input gamma_max,
DataType out_type,
float variance_epsilon,
bool scale_after_normalization
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::QuantizedBatchNormWithGlobalNormalization Class Reference\n\ntensorflow::ops::QuantizedBatchNormWithGlobalNormalization\n==========================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nQuantized Batch normalization.\n\nSummary\n-------\n\nThis op is deprecated and will be removed in the future. Prefer `tf.nn.batch_normalization`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- t: A 4D input [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- t_min: The value represented by the lowest quantized input.\n- t_max: The value represented by the highest quantized input.\n- m: A 1D mean [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.\n- m_min: The value represented by the lowest quantized mean.\n- m_max: The value represented by the highest quantized mean.\n- v: A 1D variance [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.\n- v_min: The value represented by the lowest quantized variance.\n- v_max: The value represented by the highest quantized variance.\n- beta: A 1D beta [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. An offset to be added to the normalized tensor.\n- beta_min: The value represented by the lowest quantized offset.\n- beta_max: The value represented by the highest quantized offset.\n- gamma: A 1D gamma [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. If \"scale_after_normalization\" is true, this tensor will be multiplied with the normalized tensor.\n- gamma_min: The value represented by the lowest quantized gamma.\n- gamma_max: The value represented by the highest quantized gamma.\n- variance_epsilon: A small float number to avoid dividing by 0.\n- scale_after_normalization: A bool indicating whether the resulted tensor needs to be multiplied with gamma.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_min\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_max\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedBatchNormWithGlobalNormalization](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a06c79c043a3a55b798944a5ae0a0f148)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a84804acca133131cda9e9235b954f9af) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [result](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1ab4d42bdea55b03a105681930993cf3d4) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_max](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1aacfdd86eadc8f7972ff620b36692ef19) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_min](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a608925a87be94416e98c14506e98fb64) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### result\n\n```text\n::tensorflow::Output result\n``` \n\n### result_max\n\n```scdoc\n::tensorflow::Output result_max\n``` \n\n### result_min\n\n```scdoc\n::tensorflow::Output result_min\n``` \n\nPublic functions\n----------------\n\n### QuantizedBatchNormWithGlobalNormalization\n\n```gdscript\n QuantizedBatchNormWithGlobalNormalization(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input t,\n ::tensorflow::Input t_min,\n ::tensorflow::Input t_max,\n ::tensorflow::Input m,\n ::tensorflow::Input m_min,\n ::tensorflow::Input m_max,\n ::tensorflow::Input v,\n ::tensorflow::Input v_min,\n ::tensorflow::Input v_max,\n ::tensorflow::Input beta,\n ::tensorflow::Input beta_min,\n ::tensorflow::Input beta_max,\n ::tensorflow::Input gamma,\n ::tensorflow::Input gamma_min,\n ::tensorflow::Input gamma_max,\n DataType out_type,\n float variance_epsilon,\n bool scale_after_normalization\n)\n```"]]