संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: स्पार्सस्लाइस
#include <sparse_ops.h>
start
और size
आधार पर एक SparseTensor
काटें।
सारांश
उदाहरण के लिए, यदि इनपुट है
input_tensor = shape = [2, 7]
[ a d e ]
[b c ]
ग्राफ़िक रूप से आउटपुट टेंसर हैं:
sparse_slice([0, 0], [2, 4]) = shape = [2, 4]
[ a ]
[b c ]
sparse_slice([0, 4], [2, 3]) = shape = [2, 3]
[ d e ]
[ ]
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- सूचकांक: 2-डी टेंसर विरल टेंसर के सूचकांकों का प्रतिनिधित्व करता है।
- मान: 1-डी टेंसर विरल टेंसर के मानों का प्रतिनिधित्व करता है।
- आकार: 1-डी. टेंसर विरल टेंसर के आकार का प्रतिनिधित्व करता है।
- प्रारंभ: 1-डी. टेंसर स्लाइस की शुरुआत का प्रतिनिधित्व करता है।
- आकार: 1-डी. टेंसर स्लाइस के आकार का प्रतिनिधित्व करता है। आउटपुट सूचकांक: 1-डी टेंसरों की एक सूची आउटपुट विरल टेंसरों के सूचकांकों का प्रतिनिधित्व करती है।
रिटर्न:
-
Output
आउटपुट_इंडिसेस -
Output
आउटपुट_मान: 1-डी टेंसरों की एक सूची आउटपुट विरल टेंसरों के मूल्यों का प्रतिनिधित्व करती है। -
Output
आउटपुट_आकार: 1-डी टेंसर की एक सूची आउटपुट विरल टेंसर के आकार का प्रतिनिधित्व करती है।
सार्वजनिक गुण
सार्वजनिक समारोह
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::SparseSlice Class Reference\n\ntensorflow::ops::SparseSlice\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nSlice a `SparseTensor` based on the `start` and `size`.\n\nSummary\n-------\n\nFor example, if the input is \n\n```objective-c\ninput_tensor = shape = [2, 7]\n[ a d e ]\n[b c ]\n```\n\n\u003cbr /\u003e\n\nGraphically the output tensors are: \n\n```objective-c\nsparse_slice([0, 0], [2, 4]) = shape = [2, 4]\n[ a ]\n[b c ]\n\nsparse_slice([0, 4], [2, 3]) = shape = [2, 3]\n[ d e ]\n[ ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D tensor represents the indices of the sparse tensor.\n- values: 1-D tensor represents the values of the sparse tensor.\n- shape: 1-D. tensor represents the shape of the sparse tensor.\n- start: 1-D. tensor represents the start of the slice.\n- size: 1-D. tensor represents the size of the slice. output indices: A list of 1-D tensors represents the indices of the output sparse tensors.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: A list of 1-D tensors represents the values of the output sparse tensors.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_shape: A list of 1-D tensors represents the shape of the output sparse tensors.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSlice](#classtensorflow_1_1ops_1_1_sparse_slice_1ae85f2c76a6927e51533cbd7f29023384)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` values, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` start, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` size)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_slice_1aed4bb735de50f6dd5197a9c1f1e0c495) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_slice_1aaecbd9e39db620d14102a63edfcd268b) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_slice_1a9bb1a626ae5c8aba33b1fc1faad36c60) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_slice_1ac1c6b7424ce33a53834c6c362ae8790a) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::Output output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseSlice\n\n```gdscript\n SparseSlice(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input indices,\n ::tensorflow::Input values,\n ::tensorflow::Input shape,\n ::tensorflow::Input start,\n ::tensorflow::Input size\n)\n```"]]