Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: SparseSoftmax
#include <sparse_ops.h>
Toplu bir ND SparseTensor
softmax uygular.
Özet
Girişler, mantıksal şekle [..., B, C]
(burada N >= 2
) ve kanonik sözlükbilimsel sıraya göre sıralanmış endekslere sahip bir ND SparseTensor'u temsil eder.
Bu işlem, [B, C]
şeklindeki en içteki mantıksal alt matrislerin her birine normal tf.nn.softmax()
uygulanmasına eşdeğerdir, ancak örtülü olarak sıfır öğelerin katılmadığı yakalaması vardır. Algoritma özellikle aşağıdakine eşdeğerdir:
(1) tf.nn.softmax()
yöntemini, boyut-C boyutu boyunca [B, C]
şekline sahip en içteki her alt matrisin yoğunlaştırılmış görünümüne uygular; (2) Orijinal dolaylı sıfır konumlarını maskeler; (3) Kalan elemanları yeniden normalleştirir.
Dolayısıyla SparseTensor
sonucu tamamen aynı sıfır olmayan indekslere ve şekle sahiptir.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- sp_indeksleri: 2-D. Kanonik sıralamada bir SparseTensor'da boş olmayan değerlerin indekslerini içeren
NNZ x R
matrisi. - sp_values: 1-D.
sp_indices
karşılık gelen NNZ
boş olmayan değerler. - sp_shape: 1-D. SparseTensor girişinin şekli.
İade:
-
Output
: 1-D. SparseTensor
sonucunun NNZ
değerleri.
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::SparseSoftmax Class Reference\n\ntensorflow::ops::SparseSoftmax\n==============================\n\n`#include \u003csparse_ops.h\u003e`\n\nApplies softmax to a batched N-D `SparseTensor`.\n\nSummary\n-------\n\nThe inputs represent an N-D SparseTensor with logical shape `[..., B, C]` (where `N \u003e= 2`), and with indices sorted in the canonical lexicographic order.\n\nThis op is equivalent to applying the normal `tf.nn.softmax()` to each innermost logical submatrix with shape `[B, C]`, but with the catch that *the implicitly zero elements do not participate*. Specifically, the algorithm is equivalent to the following:\n\n(1) Applies `tf.nn.softmax()` to a densified view of each innermost submatrix with shape `[B, C]`, along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.\n\nHence, the `SparseTensor` result has exactly the same non-zero indices and shape.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- sp_indices: 2-D. `NNZ x R` matrix with the indices of non-empty values in a SparseTensor, in canonical ordering.\n- sp_values: 1-D. `NNZ` non-empty values corresponding to `sp_indices`.\n- sp_shape: 1-D. Shape of the input SparseTensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1-D. The `NNZ` values for the result `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSoftmax](#classtensorflow_1_1ops_1_1_sparse_softmax_1a64ec9c22eb2f8d50797cfb39eb94009d)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_indices, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_values, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_shape)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_softmax_1ad2dc43b15de20c26df875d2e2f5e9191) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_softmax_1a94b1fda8269b6888396b9c165fdd28b1) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_softmax_1aabb6b649a7d5f3c8a9db2dea2c44ef1a)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_softmax_1af6f0269e4c290ac6b8234ba881dafe13)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_softmax_1a1fccadd0a530764ea2d1691045ebf2a5)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSoftmax\n\n```gdscript\n SparseSoftmax(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input sp_indices,\n ::tensorflow::Input sp_values,\n ::tensorflow::Input sp_shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]