tensorflow::ops::QuantizedInstanceNorm

#include <array_ops.h>

Quantized Instance normalization.

Summary

Args:

  • scope: A Scope object
  • x: A 4D input Tensor.
  • x_min: The value represented by the lowest quantized input.
  • x_max: The value represented by the highest quantized input.

Optional attributes (see Attrs):

  • output_range_given: If True, given_y_min and given_y_min and given_y_max are used as the output range. Otherwise, the implementation computes the output range.
  • given_y_min: Output in y_min if output_range_given is True.
  • given_y_max: Output in y_max if output_range_given is True.
  • variance_epsilon: A small float number to avoid dividing by 0.
  • min_separation: Minimum value of y_max - y_min

Returns:

  • Output y: A 4D Tensor.
  • Output y_min: The value represented by the lowest quantized output.
  • Output y_max: The value represented by the highest quantized output.

Public static functions

GivenYMax(float x)
GivenYMin(float x)
MinSeparation(float x)
OutputRangeGiven(bool x)
VarianceEpsilon(float x)

Public attributes

operation

Operation operation

y_max

::tensorflow::Output y_max

y_min

::tensorflow::Output y_min

Public functions

QuantizedInstanceNorm

 QuantizedInstanceNorm(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input x,
  ::tensorflow::Input x_min,
  ::tensorflow::Input x_max
)

QuantizedInstanceNorm

 QuantizedInstanceNorm(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input x,
  ::tensorflow::Input x_min,
  ::tensorflow::Input x_max,
  const QuantizedInstanceNorm::Attrs & attrs
)

Public static functions

GivenYMax

Attrs GivenYMax(
  float x
)

GivenYMin

Attrs GivenYMin(
  float x
)

MinSeparation

Attrs MinSeparation(
  float x
)

OutputRangeGiven

Attrs OutputRangeGiven(
  bool x
)

VarianceEpsilon

Attrs VarianceEpsilon(
  float x
)