จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน
บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ
เทนเซอร์โฟลว์:: ปฏิบัติการ:: อินท็อปเควี2
#include <nn_ops.h>
บอกว่าเป้าหมายอยู่ในการทำนาย K
อันดับต้น ๆ หรือไม่
สรุป
สิ่งนี้จะส่งออกอาร์เรย์บูล batch_size
รายการ out[i]
จะเป็น true
หากการทำนายสำหรับคลาสเป้าหมายเป็นหนึ่งในการทำนาย k
อันดับต้น ๆ ในบรรดาการทำนายทั้งหมดเช่น i
โปรดทราบว่าพฤติกรรมของ InTopK
แตกต่างจาก TopK
ในการจัดการความสัมพันธ์ หากหลายคลาสมีค่าการทำนายเท่ากันและคร่อมขอบเขต top- k
คลาสเหล่านั้นทั้งหมดจะถือว่าอยู่ใน top k
อย่างเป็นทางการมากขึ้น, ให้
\(predictions_i\) เป็นการทำนายสำหรับทุกคลาสเช่น i
\(targets_i\) เป็นคลาสเป้าหมายเช่น i
\(out_i\) เป็นผลลัพธ์เช่น i
$$out_i = predictions_{i, targets_i} TopKIncludingTies(predictions_i)$$
ข้อโต้แย้ง:
- ขอบเขต: วัตถุ ขอบเขต
- การคาดการณ์: เทนเซอร์
batch_size
x classes
- เป้าหมาย: เวกเตอร์
batch_size
ของรหัสคลาส - k: จำนวนองค์ประกอบหลักที่ต้องพิจารณาเพื่อความแม่นยำในการคำนวณ
ผลตอบแทน:
คุณลักษณะสาธารณะ
งานสาธารณะ
โหนด
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ตัวดำเนินการ::tensorflow::เอาต์พุต
operator::tensorflow::Output() const
เนื้อหาของหน้าเว็บนี้ได้รับอนุญาตภายใต้ใบอนุญาตที่ต้องระบุที่มาของครีเอทีฟคอมมอนส์ 4.0 และตัวอย่างโค้ดได้รับอนุญาตภายใต้ใบอนุญาต Apache 2.0 เว้นแต่จะระบุไว้เป็นอย่างอื่น โปรดดูรายละเอียดที่นโยบายเว็บไซต์ Google Developers Java เป็นเครื่องหมายการค้าจดทะเบียนของ Oracle และ/หรือบริษัทในเครือ
อัปเดตล่าสุด 2025-07-26 UTC
[null,null,["อัปเดตล่าสุด 2025-07-26 UTC"],[],[],null,["# tensorflow::ops::InTopKV2 Class Reference\n\ntensorflow::ops::InTopKV2\n=========================\n\n`#include \u003cnn_ops.h\u003e`\n\nSays whether the targets are in the top `K` predictions.\n\nSummary\n-------\n\nThis outputs a `batch_size` bool array, an entry `out[i]` is `true` if the prediction for the target class is among the top `k` predictions among all predictions for example `i`. Note that the behavior of [InTopK](/versions/r1.15/api_docs/cc/class/tensorflow/ops/in-top-k#classtensorflow_1_1ops_1_1_in_top_k) differs from the [TopK](/versions/r1.15/api_docs/cc/class/tensorflow/ops/top-k#classtensorflow_1_1ops_1_1_top_k) op in its handling of ties; if multiple classes have the same prediction value and straddle the top-`k` boundary, all of those classes are considered to be in the top `k`.\n\nMore formally, let\n\n\\\\(predictions_i\\\\) be the predictions for all classes for example `i`, \\\\(targets_i\\\\) be the target class for example `i`, \\\\(out_i\\\\) be the output for example `i`,\n\n$$out_i = predictions_{i, targets_i} TopKIncludingTies(predictions_i)$$\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- predictions: A `batch_size` x `classes` tensor.\n- targets: A `batch_size` vector of class ids.\n- k: Number of top elements to look at for computing precision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Computed precision at `k` as a `bool `[Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [InTopKV2](#classtensorflow_1_1ops_1_1_in_top_k_v2_1a7c731af26675d2a0a5e65d4bf0501a07)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` predictions, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` targets, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_in_top_k_v2_1ad9127d0ee0e56405da77c8f8f0b0ad34) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [precision](#classtensorflow_1_1ops_1_1_in_top_k_v2_1a66a3668a94dcfe6ed4412c6d48fac92b) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_in_top_k_v2_1aca4c7a082803ec5e95dfcafac0999657)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_in_top_k_v2_1a7197986e89c2315b1a6458dcffdfd0d5)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_in_top_k_v2_1aa8a166a0b803daf34df7fd9ef3c91d40)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### precision\n\n```text\n::tensorflow::Output precision\n``` \n\nPublic functions\n----------------\n\n### InTopKV2\n\n```gdscript\n InTopKV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input predictions,\n ::tensorflow::Input targets,\n ::tensorflow::Input k\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]