Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Ma TrậnDiag
#include <array_ops.h>
Trả về một tenxơ chéo theo bó với các giá trị đường chéo theo bó cho trước.
Bản tóm tắt
Cho một diagonal
, thao tác này trả về một tenxơ có diagonal
và mọi thứ khác được đệm bằng số không. Đường chéo được tính như sau:
Giả sử diagonal
có k
chiều [I, J, K, ..., N]
, thì đầu ra là một tenxơ hạng k+1
có kích thước [I, J, K, ..., N, N]` trong đó:
output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]
.
Ví dụ:
# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]
and diagonal.shape = (2, 4)
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
which has shape (2, 4, 4)
Lập luận:
- phạm vi: Một đối tượng phạm vi
- đường chéo: Xếp hạng
k
, trong đó k >= 1
.
Trả về:
-
Output
: Xếp hạng k+1
, với output.shape = diagonal.shape + [diagonal.shape[-1]]
.
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::MatrixDiag Class Reference\n\ntensorflow::ops::MatrixDiag\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched diagonal tensor with a given batched diagonal values.\n\nSummary\n-------\n\nGiven a `diagonal`, this operation returns a tensor with the `diagonal` and everything else padded with zeros. The diagonal is computed as follows:\n\nAssume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a tensor of rank `k+1` with dimensions \\[I, J, K, ..., N, N\\]\\` where:\n\n`output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`.\n\nFor example:\n\n\n```text\n# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```text\nand diagonal.shape = (2, 4)\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_diag(diagonal) ==\u003e [[[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]],\n [[5, 0, 0, 0]\n [0, 6, 0, 0]\n [0, 0, 7, 0]\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```perl6\nwhich has shape (2, 4, 4)\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank `k`, where `k \u003e= 1`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k+1`, with `output.shape = diagonal.shape + [diagonal.shape[-1]]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiag](#classtensorflow_1_1ops_1_1_matrix_diag_1a2b263945a55c830cec2aa8e732ad4c37)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_1a2a3f9fd08f8b6b8b5209a62bc2c0e4e4) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_diag_1aba2480ed932f279c48fc6028f6be7a92) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_1aa1db7faefb57b9fee4eddaee99c3a5a3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_1ae38fc37ca0a5a229e9c9d3f827ebfa6d)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_1aaaad00f636d2ad7be0fd131133b79006)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixDiag\n\n```gdscript\n MatrixDiag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]