সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: ননম্যাক্স দমন ওভারল্যাপস
#include <image_ops.h>
লোভের সাথে স্কোরের নিচের ক্রম অনুসারে বাউন্ডিং বাক্সের একটি উপসেট নির্বাচন করে।
সারাংশ
পূর্বে নির্বাচিত বাক্সগুলির সাথে উচ্চ ওভারল্যাপ রয়েছে এমন বাক্সগুলিকে ছাঁটাই করা। score_threshold
চেয়ে কম স্কোর সহ বাউন্ডিং বাক্সগুলি সরানো হয়। এন-বাই-এন ওভারল্যাপ মানগুলি বর্গ ম্যাট্রিক্স হিসাবে সরবরাহ করা হয়, যা একটি কাস্টম ওভারল্যাপ মানদণ্ড (যেমন। ইউনিয়নের উপর ছেদ, এলাকার উপর ছেদ, ইত্যাদি) সংজ্ঞায়িত করার অনুমতি দেয়।
এই ক্রিয়াকলাপের আউটপুট হল পূর্ণসংখ্যার একটি সেট যা নির্বাচিত বাক্সগুলির প্রতিনিধিত্বকারী বাউন্ডিং বাক্সগুলির ইনপুট সংগ্রহে সূচী করে। বাউন্ডিং বক্স স্থানাঙ্ক নির্বাচিত সূচকগুলির সাথে সম্পর্কিত তারপর tf.gather operation
ব্যবহার করে প্রাপ্ত করা যেতে পারে। যেমন:
নির্বাচিত_সূচক = tf.image.non_max_suppression_with_overlaps( overlaps, স্কোর, max_output_size, overlap_threshold, score_threshold) Selected_boxes = tf.gather(বক্স, নির্বাচিত_সূচক)
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- ওভারল্যাপ: আকৃতির একটি 2-ডি ফ্লোট টেনসর
[num_boxes, num_boxes]
যা এন-বাই-এন বক্স ওভারল্যাপ মানগুলিকে প্রতিনিধিত্ব করে। - স্কোর: আকৃতির একটি 1-ডি ফ্লোট টেনসর
[num_boxes]
প্রতিটি বাক্সের (প্রতিটি বাক্সের সারি) সাথে সম্পর্কিত একটি একক স্কোর প্রতিনিধিত্ব করে। - max_output_size: একটি স্কেলার পূর্ণসংখ্যা টেনসর যা সর্বাধিক সংখ্যক বাক্সের প্রতিনিধিত্ব করে যা অ-ম্যাক্স সাপ্রেশন দ্বারা নির্বাচন করা হবে।
- ওভারল্যাপ_থ্রেশহোল্ড: একটি 0-ডি ফ্লোট টেনসর যা থ্রেশহোল্ডের প্রতিনিধিত্ব করে তা সিদ্ধান্ত নেওয়ার জন্য যে বাক্সগুলিও ওভারল্যাপ হবে কিনা।
- স্কোর_থ্রেশহোল্ড: একটি 0-ডি ফ্লোট টেনসর স্কোরের উপর ভিত্তি করে কখন বাক্সগুলি সরাতে হবে তা সিদ্ধান্ত নেওয়ার জন্য থ্রেশহোল্ডের প্রতিনিধিত্ব করে।
রিটার্ন:
-
Output
: একটি 1-ডি পূর্ণসংখ্যার টেনসর আকৃতির [M]
বক্স টেনসর থেকে নির্বাচিত সূচকগুলিকে প্রতিনিধিত্ব করে, যেখানে M <= max_output_size
।
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
নোড
::tensorflow::Node * node() const
operator::tensorflow::Input() const
অপারেটর::টেনসরফ্লো::আউটপুট
operator::tensorflow::Output() const
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::NonMaxSuppressionWithOverlaps Class Reference\n\ntensorflow::ops::NonMaxSuppressionWithOverlaps\n==============================================\n\n`#include \u003cimage_ops.h\u003e`\n\nGreedily selects a subset of bounding boxes in descending order of score,.\n\nSummary\n-------\n\npruning away boxes that have high overlaps with previously selected boxes. Bounding boxes with score less than `score_threshold` are removed. N-by-n overlap values are supplied as square matrix, which allows for defining a custom overlap criterium (eg. intersection over union, intersection over area, etc.).\n\nThe output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example:\n\nselected_indices = tf.image.non_max_suppression_with_overlaps( overlaps, scores, max_output_size, overlap_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices)\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- overlaps: A 2-D float tensor of shape `[num_boxes, num_boxes]` representing the n-by-n box overlap values.\n- scores: A 1-D float tensor of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes).\n- max_output_size: A scalar integer tensor representing the maximum number of boxes to be selected by non max suppression.\n- overlap_threshold: A 0-D float tensor representing the threshold for deciding whether boxes overlap too.\n- score_threshold: A 0-D float tensor representing the threshold for deciding when to remove boxes based on score.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 1-D integer tensor of shape `[M]` representing the selected indices from the boxes tensor, where `M \u003c= max_output_size`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [NonMaxSuppressionWithOverlaps](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1af965488437d8cbc7c79e1c36eca2abb3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` overlaps, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` scores, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_output_size, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` overlap_threshold, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` score_threshold)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a2f05b95bdafce0c5fc4a8269b35709e3) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [selected_indices](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1ab9ac497f027b7104d8ba5463a5a487ca) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a77c8843216c117ea9cc2597027f4a20e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a46f0366220ce965998602e5248c93070)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a636de2d3e1a950d52efadd9bff02eb59)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### selected_indices\n\n```scdoc\n::tensorflow::Output selected_indices\n``` \n\nPublic functions\n----------------\n\n### NonMaxSuppressionWithOverlaps\n\n```gdscript\n NonMaxSuppressionWithOverlaps(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input overlaps,\n ::tensorflow::Input scores,\n ::tensorflow::Input max_output_size,\n ::tensorflow::Input overlap_threshold,\n ::tensorflow::Input score_threshold\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]