Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: PadV2
#include <array_ops.h>
Đệm một tensor.
Bản tóm tắt
Thao tác này đệm input
theo paddings
và constant_values
mà bạn chỉ định. paddings
là một tensor số nguyên có hình dạng [Dn, 2]
, trong đó n là thứ hạng của input
. Đối với mỗi thứ nguyên D của input
, paddings[D, 0]
cho biết có bao nhiêu giá trị phần đệm cần thêm vào trước nội dung của input
trong thứ nguyên đó và paddings[D, 1]
cho biết có bao nhiêu giá trị phần đệm cần thêm sau nội dung của input
trong thứ nguyên đó kích thước. constant_values
là một tensor vô hướng cùng loại với input
cho biết giá trị được sử dụng cho phần đệm input
.
Kích thước đệm của mỗi chiều D của đầu ra là:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Ví dụ:
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# 'constant_values' is 0
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 2, 2, 0, 0]
[0, 0, 0, 0, 0, 0]]
Lập luận:
Trả về:
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::PadV2 Class Reference\n\ntensorflow::ops::PadV2\n======================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor.\n\nSummary\n-------\n\nThis operation pads `input` according to the `paddings` and `constant_values` you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many padding values to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many padding values to add after the contents of `input` in that dimension. `constant_values` is a scalar tensor of the same type as `input` that indicates the value to use for padding `input`.\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```gdscript\n# 't' is [[1, 1], [2, 2]]\n# 'paddings' is [[1, 1], [2, 2]]\n# 'constant_values' is 0\n# rank of 't' is 2\npad(t, paddings) ==\u003e [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [PadV2](#classtensorflow_1_1ops_1_1_pad_v2_1a7bfe2355f5a726124af6e6f1b824b9cb)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` constant_values)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_pad_v2_1aa6b1cf71582c8eb44a33bac7b2750a55) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_pad_v2_1ad73c63310fcef6d2993c1a43c93aa7a1) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_pad_v2_1a4f62d5b59022fec3a068bd2196a98891)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_pad_v2_1a74d06bca0cc72234b6a1578639fca7f5)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_pad_v2_1ad0329a090a7e956fcd77489c7d27edc4)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### PadV2\n\n```gdscript\n PadV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n ::tensorflow::Input constant_values\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]