Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: đệm
#include <array_ops.h>
Đệm một tensor bằng số không.
Bản tóm tắt
Thao tác này đệm input
bằng các số 0 theo paddings
mà bạn chỉ định. paddings
là một tensor số nguyên có hình dạng [Dn, 2]
, trong đó n là thứ hạng của input
. Đối với mỗi thứ nguyên D của input
, paddings[D, 0]
cho biết số lượng số 0 cần thêm trước nội dung input
trong thứ nguyên đó và paddings[D, 1]
cho biết số lượng số 0 cần thêm sau nội dung input
trong thứ nguyên đó.
Kích thước đệm của mỗi chiều D của đầu ra là:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Ví dụ:
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 2, 2, 0, 0]
[0, 0, 0, 0, 0, 0]]
Lập luận:
Trả về:
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::Pad Class Reference\n\ntensorflow::ops::Pad\n====================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor with zeros.\n\nSummary\n-------\n\nThis operation pads a `input` with zeros according to the `paddings` you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many zeros to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many zeros to add after the contents of `input` in that dimension.\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```text\n# 't' is [[1, 1], [2, 2]]\n# 'paddings' is [[1, 1], [2, 2]]\n# rank of 't' is 2\npad(t, paddings) ==\u003e [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Pad](#classtensorflow_1_1ops_1_1_pad_1a85413c81814471dc1ba383fffd013f80)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_pad_1a563b99bce289e4fa9fff7224401df773) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_pad_1aa9ec34eb45ae5c727d6bba3e8b51be74) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_pad_1a56e85f7a36d0008faa2e054812438b98)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_pad_1a800a33c0560ed61b5f202d6a5aaf4ca9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_pad_1a177bc15a4ed8369a6438d47130f9ac27)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Pad\n\n```gdscript\n Pad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]