Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : ResourceApplyFtrlV2
#include <training_ops.h>
Mettez à jour '*var' selon le schéma Ftrl-proximal.
Résumé
grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad_with_shrinkage * grad_with_shrinkage linéaire += grad_with_shrinkage + (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (signe(linéaire) * l1 - linéaire) / quadratique si |linéaire| > l1 sinon 0,0 cumul = accum_new
Arguments :
- scope : un objet Scope
- var : doit provenir d'une variable ().
- cumul : doit provenir d'une variable ().
- linéaire : doit provenir d’une variable().
- grad : Le dégradé.
- lr : facteur d’échelle. Ça doit être un scalaire.
- l1 : régularisation L1. Ça doit être un scalaire.
- l2 : régularisation du retrait L2. Ça doit être un scalaire.
- lr_power : facteur d'échelle. Ça doit être un scalaire.
Attributs facultatifs (voir Attrs
) :
- use_locking : Si
True
, la mise à jour des tenseurs var et accum sera protégée par un verrou ; sinon, le comportement n'est pas défini, mais peut présenter moins de conflits.
Retours :
Constructeurs et Destructeurs |
---|
ResourceApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power)
|
ResourceApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const ResourceApplyFtrlV2::Attrs & attrs) |
Attributs publics
Fonctions publiques
ResourceApplyFtrlV2
ResourceApplyFtrlV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input l2_shrinkage,
::tensorflow::Input lr_power,
const ResourceApplyFtrlV2::Attrs & attrs
)
opérateur :: tensorflow :: Opération
operator::tensorflow::Operation() const
Fonctions statiques publiques
UtiliserVerrouillage
Attrs UseLocking(
bool x
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::ResourceApplyFtrlV2 Class Reference\n\ntensorflow::ops::ResourceApplyFtrlV2\n====================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the Ftrl-proximal scheme.\n\nSummary\n-------\n\ngrad_with_shrinkage = grad + 2 \\* l2_shrinkage \\* var accum_new = accum + grad_with_shrinkage \\* grad_with_shrinkage linear += grad_with_shrinkage + (accum_new\\^(-lr_power) - accum\\^(-lr_power)) / lr \\* var quadratic = 1.0 / (accum_new\\^(lr_power) \\* lr) + 2 \\* l2 var = (sign(linear) \\* l1 - linear) / quadratic if \\|linear\\| \\\u003e l1 else 0.0 accum = accum_new\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- linear: Should be from a Variable().\n- grad: The gradient.\n- lr: Scaling factor. Must be a scalar.\n- l1: L1 regulariation. Must be a scalar.\n- l2: L2 shrinkage regulariation. Must be a scalar.\n- lr_power: Scaling factor. Must be a scalar.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceApplyFtrlV2](#classtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1af0cd2da7fd04b586801c7ff65201b3c6)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2_shrinkage, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power)` ||\n| [ResourceApplyFtrlV2](#classtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1a2ddc33ae007578e3d302ff7cd7da72bf)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2_shrinkage, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power, const `[ResourceApplyFtrlV2::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1a055d8d299e112489bb08106d147d44be) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1a58cdd4377a81f3e98cc04b4cd0428827)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1a52d5b1bbc4f4f6722afad9df9b5ec209)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_resource_apply_ftrl_v2_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceApplyFtrlV2::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-ftrl-v2/attrs) | Optional attribute setters for [ResourceApplyFtrlV2](/versions/r1.15/api_docs/cc/class/tensorflow/ops/resource-apply-ftrl-v2#classtensorflow_1_1ops_1_1_resource_apply_ftrl_v2). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceApplyFtrlV2\n\n```gdscript\n ResourceApplyFtrlV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input l2_shrinkage,\n ::tensorflow::Input lr_power\n)\n``` \n\n### ResourceApplyFtrlV2\n\n```gdscript\n ResourceApplyFtrlV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input l2_shrinkage,\n ::tensorflow::Input lr_power,\n const ResourceApplyFtrlV2::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]