Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : DispersionNdAjouter
#include <state_ops.h>
Applique une addition clairsemée à des valeurs ou tranches individuelles dans une Variable .
Résumé
ref
est un Tensor
de rang P
et indices
est un Tensor
de rang Q
.
indices
doivent être des tenseurs entiers, contenant des indices dans ref
. Il doit avoir la forme [d_0, ..., d_{Q-2}, K]
où 0 < K <= P
.
La dimension la plus intérieure des indices
(de longueur K
) correspond aux indices en éléments (si K = P
) ou en tranches (si K < P
) le long de la K
ème dimension de ref
.
updates
sont Tensor
de rang Q-1+PK
de forme :
[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]
Par exemple, disons que nous voulons ajouter 4 éléments dispersés à un tenseur de rang 1 à 8 éléments. En Python, cet ajout ressemblerait à ceci :
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
add = tf.scatter_nd_add(ref, indices, updates)
with tf.Session() as sess:
print sess.run(add)
La mise à jour résultante de la référence ressemblerait à ceci :
[1, 13, 3, 14, 14, 6, 7, 20]
Voir tf.scatter_nd
pour plus de détails sur la façon de mettre à jour les tranches.
Arguments :
- scope : un objet Scope
- ref : Un Tensor mutable. Doit provenir d’un nœud variable .
- indices : un tenseur . Doit être l'un des types suivants : int32, int64. Un tenseur d'indices dans la réf.
- mises à jour : Un Tenseur . Doit être du même type que la réf. Un tenseur de valeurs mises à jour à ajouter à la réf.
Attributs facultatifs (voir Attrs
) :
- use_locking : un booléen facultatif. La valeur par défaut est True. Si True, l'affectation sera protégée par un verrou ; sinon, le comportement n'est pas défini, mais peut présenter moins de conflits.
Retours :
-
Output
: Identique à la réf. Renvoyé pour faciliter les opérations qui souhaitent utiliser les valeurs mises à jour une fois la mise à jour terminée.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Fonctions statiques publiques
UtiliserVerrouillage
Attrs UseLocking(
bool x
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::ScatterNdAdd Class Reference\n\ntensorflow::ops::ScatterNdAdd\n=============================\n\n`#include \u003cstate_ops.h\u003e`\n\nApplies sparse addition to individual values or slices in a [Variable](/versions/r1.15/api_docs/cc/class/tensorflow/ops/variable#classtensorflow_1_1ops_1_1_variable).\n\nSummary\n-------\n\n`ref` is a [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with rank `P` and `indices` is a [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) of rank `Q`.\n\n`indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 \u003c K \u003c= P`.\n\nThe innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K \u003c P`) along the `K`th dimension of `ref`.\n\n`updates` is [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) of rank `Q-1+P-K` with shape:\n\n\n```transact-sql\n[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]\n```\n\n\u003cbr /\u003e\n\nFor example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that addition would look like this:\n\n\n```gdscript\nref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])\nindices = tf.constant([[4], [3], [1], [7]])\nupdates = tf.constant([9, 10, 11, 12])\nadd = tf.scatter_nd_add(ref, indices, updates)\nwith tf.Session() as sess:\n print sess.run(add)\n```\n\n\u003cbr /\u003e\n\nThe resulting update to ref would look like this: \n\n```text\n[1, 13, 3, 14, 14, 6, 7, 20]\n```\n\n\u003cbr /\u003e\n\nSee `tf.scatter_nd` for more details about how to make updates to slices.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- ref: A mutable [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). Should be from a [Variable](/versions/r1.15/api_docs/cc/class/tensorflow/ops/variable#classtensorflow_1_1ops_1_1_variable) node.\n- indices: A [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). Must be one of the following types: int32, int64. A tensor of indices into ref.\n- updates: A [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). Must have the same type as ref. A tensor of updated values to add to ref.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-add/attrs#structtensorflow_1_1ops_1_1_scatter_nd_add_1_1_attrs)):\n\n- use_locking: An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ScatterNdAdd](#classtensorflow_1_1ops_1_1_scatter_nd_add_1a138d4ff980f1a1c856fa78bd86a09e54)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ref, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` updates)` ||\n| [ScatterNdAdd](#classtensorflow_1_1ops_1_1_scatter_nd_add_1ae0ef19022b7465666026da0e92b88989)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ref, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` updates, const `[ScatterNdAdd::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-add/attrs#structtensorflow_1_1ops_1_1_scatter_nd_add_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_scatter_nd_add_1a1c417c3ef3f4b9045718379caed4fa18) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_ref](#classtensorflow_1_1ops_1_1_scatter_nd_add_1a87550a24f5b9120902042ec65b457c6a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_scatter_nd_add_1a2527951beff23f5d906fe8c451a4d3c6)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_scatter_nd_add_1a0f4d17afad4086d274e3a5f342cb6b41)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_scatter_nd_add_1af62e0d7ee1e7c513f1ca2b1e126c6361)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_scatter_nd_add_1a6e1404fae24acf1e8128e7f2963fb31c)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-add/attrs#structtensorflow_1_1ops_1_1_scatter_nd_add_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ScatterNdAdd::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-add/attrs) | Optional attribute setters for [ScatterNdAdd](/versions/r1.15/api_docs/cc/class/tensorflow/ops/scatter-nd-add#classtensorflow_1_1ops_1_1_scatter_nd_add). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_ref\n\n```scdoc\n::tensorflow::Output output_ref\n``` \n\nPublic functions\n----------------\n\n### ScatterNdAdd\n\n```gdscript\n ScatterNdAdd(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input ref,\n ::tensorflow::Input indices,\n ::tensorflow::Input updates\n)\n``` \n\n### ScatterNdAdd\n\n```gdscript\n ScatterNdAdd(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input ref,\n ::tensorflow::Input indices,\n ::tensorflow::Input updates,\n const ScatterNdAdd::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]