Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: SoftmaxCrossEntropyWithLogits
#include <nn_ops.h>
Tính toán chi phí entropy chéo softmax và độ dốc để truyền ngược.
Bản tóm tắt
Đầu vào là logit, không phải xác suất.
Lập luận:
- phạm vi: Một đối tượng Phạm vi
- các tính năng: ma trận batch_size x num_classes
- nhãn: ma trận batch_size x num_classes Người gọi phải đảm bảo rằng mỗi lô nhãn thể hiện phân bố xác suất hợp lệ.
Trả về:
- Mất
Output
: Mất mỗi ví dụ (vectơ batch_size). - Backprop
Output
: độ dốc lan truyền ngược (ma trận batch_size x num_classes).
Thuộc tính công khai
Chức năng công cộng
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SoftmaxCrossEntropyWithLogits Class Reference\n\ntensorflow::ops::SoftmaxCrossEntropyWithLogits\n==============================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax cross entropy cost and gradients to backpropagate.\n\nSummary\n-------\n\nInputs are the logits, not probabilities.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- features: batch_size x num_classes matrix\n- labels: batch_size x num_classes matrix The caller must ensure that each batch of labels represents a valid probability distribution.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) loss: Per example loss (batch_size vector).\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop: backpropagated gradients (batch_size x num_classes matrix).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SoftmaxCrossEntropyWithLogits](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1a4cbff4fa9d4606e374b1a88b5de132dc)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` labels)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [backprop](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1a3f3e88d3a28b38d7190c586e53a90391) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [loss](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1ad3f6fea2fc731063932763fa4b3c8ce0) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1aec7fdf4d82369e8bc00d0c9c8dd7faab) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### backprop\n\n```text\n::tensorflow::Output backprop\n``` \n\n### loss\n\n```text\n::tensorflow::Output loss\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SoftmaxCrossEntropyWithLogits\n\n```gdscript\n SoftmaxCrossEntropyWithLogits(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input labels\n)\n```"]]