Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Phân chia thưa thớt
#include <sparse_ops.h>
Chia một SparseTensor
thành các tensor num_split
dọc theo một chiều.
Bản tóm tắt
Nếu shape[split_dim]
không phải là bội số nguyên của num_split
. Lát [0 : shape[split_dim] % num_split]
có thêm một chiều. Ví dụ: nếu split_dim = 1
và num_split = 2
và đầu vào là
input_tensor = shape = [2, 7]
[ a d e ]
[b c ]
Về mặt đồ họa, các tensor đầu ra là:
output_tensor[0] = shape = [2, 4]
[ a ]
[b c ]
output_tensor[1] = shape = [2, 3]
[ d e ]
[ ]
Lập luận:
- phạm vi: Một đối tượng Phạm vi
- chia_dim: 0-D. Kích thước để phân chia. Phải nằm trong phạm vi
[0, rank(shape))
. - chỉ số: tensor 2-D biểu thị các chỉ số của tensor thưa thớt.
- giá trị: tensor 1-D đại diện cho các giá trị của tensor thưa thớt.
- hình dạng: 1-D. tensor đại diện cho hình dạng của tensor thưa thớt. chỉ số đầu ra: Danh sách các tensor 1-D biểu thị chỉ số của tensor thưa thớt đầu ra.
- num_split: Số cách chia.
Trả về:
-
OutputList
-
OutputList
đầu ra_values: Danh sách các tensor 1-D biểu thị các giá trị của tensor thưa thớt đầu ra. -
OutputList
đầu ra_shape: Danh sách các tensor 1-D biểu thị hình dạng của tensor thưa thớt đầu ra.
Thuộc tính công khai
Chức năng công cộng
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseSplit Class Reference\n\ntensorflow::ops::SparseSplit\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nSplit a `SparseTensor` into `num_split` tensors along one dimension.\n\nSummary\n-------\n\nIf the `shape[split_dim]` is not an integer multiple of `num_split`. Slices `[0 : shape[split_dim] % num_split]` gets one extra dimension. For example, if `split_dim = 1` and `num_split = 2` and the input is \n\n```objective-c\ninput_tensor = shape = [2, 7]\n[ a d e ]\n[b c ]\n```\n\n\u003cbr /\u003e\n\nGraphically the output tensors are: \n\n```objective-c\noutput_tensor[0] = shape = [2, 4]\n[ a ]\n[b c ]\n\noutput_tensor[1] = shape = [2, 3]\n[ d e ]\n[ ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- split_dim: 0-D. The dimension along which to split. Must be in the range `[0, rank(shape))`.\n- indices: 2-D tensor represents the indices of the sparse tensor.\n- values: 1-D tensor represents the values of the sparse tensor.\n- shape: 1-D. tensor represents the shape of the sparse tensor. output indices: A list of 1-D tensors represents the indices of the output sparse tensors.\n- num_split: The number of ways to split.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` output_indices\n- `OutputList` output_values: A list of 1-D tensors represents the values of the output sparse tensors.\n- `OutputList` output_shape: A list of 1-D tensors represents the shape of the output sparse tensors.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSplit](#classtensorflow_1_1ops_1_1_sparse_split_1a321e452a28531c13e1804a67073d0d86)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` split_dim, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` values, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, int64 num_split)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_split_1a2974c5fbf83913d7d9f9efaad3748136) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_split_1aa34695e1d3350589e31496300ce37439) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_split_1aaadf678ffb2ceae9b4a3a71e743c04e4) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_split_1a16af03b2decbe6d8c2b506f3e48dca4a) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::OutputList output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::OutputList output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::OutputList output_values\n``` \n\nPublic functions\n----------------\n\n### SparseSplit\n\n```gdscript\n SparseSplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input split_dim,\n ::tensorflow::Input indices,\n ::tensorflow::Input values,\n ::tensorflow::Input shape,\n int64 num_split\n)\n```"]]