Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : Conv2D : Attributs
#include <nn_ops.h>
Setters d'attributs facultatifs pour Conv2D .
Résumé
Fonctions publiques |
---|
DataFormat (StringPiece x) | Spécifiez le format de données des données d'entrée et de sortie. |
Dilations (const gtl::ArraySlice< int > & x) | Tenseur 1-D de longueur 4. |
ExplicitPaddings (const gtl::ArraySlice< int > & x) | Si padding est "EXPLICIT" , la liste des montants de remplissage explicites. |
UseCudnnOnGpu (bool x) | La valeur par défaut est vrai. |
Attributs publics
StringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = "NHWC"
dilatations_
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()
explicit_paddings_
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}
use_cudnn_on_gpu_
bool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true
Fonctions publiques
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(
StringPiece x
)
Spécifiez le format de données des données d'entrée et de sortie.
Avec le format par défaut « NHWC », les données sont stockées dans l'ordre : [lot, hauteur, largeur, canaux]. Alternativement, le format pourrait être « NCHW », l'ordre de stockage des données étant : [lot, canaux, hauteur, largeur].
La valeur par défaut est "NHWC"
Dilatations
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(
const gtl::ArraySlice< int > & x
)
Tenseur 1-D de longueur 4.
Le facteur de dilatation pour chaque dimension d' input
. Si défini sur k > 1, il y aura k-1 cellules ignorées entre chaque élément de filtre sur cette dimension. L'ordre des dimensions est déterminé par la valeur de data_format
, voir ci-dessus pour plus de détails. Les dilatations dans les dimensions du lot et de la profondeur doivent être de 1.
La valeur par défaut est [1, 1, 1, 1]
Remplissages explicites
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(
const gtl::ArraySlice< int > & x
)
Si padding
est "EXPLICIT"
, la liste des montants de remplissage explicites.
Pour la ième dimension, la quantité de remplissage insérée avant et après la dimension est respectivement explicit_paddings[2 * i]
et explicit_paddings[2 * i + 1]
. Si padding
n'est pas "EXPLICIT"
, explicit_paddings
doit être vide.
La valeur par défaut est []
UtiliserCudnnOnGpu
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(
bool x
)
La valeur par défaut est vrai.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/25 (UTC).
[null,null,["Dernière mise à jour le 2025/07/25 (UTC)."],[],[],null,["# tensorflow::ops::Conv2D::Attrs Struct Reference\n\ntensorflow::ops::Conv2D::Attrs\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [Conv2D](/versions/r1.15/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d).\n\nSummary\n-------\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------------------------|--------------------------|\n| [data_format_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a826b92a551e53c7d7e3f8990dbbdc328)` = \"NHWC\"` | `StringPiece` |\n| [dilations_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a38cfe8f5a9fd31568b79caff3d5db53f)` = Default_dilations()` | `gtl::ArraySlice\u003c int \u003e` |\n| [explicit_paddings_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1af6a0a48d47098676589b0c23d6615b73)` = {}` | `gtl::ArraySlice\u003c int \u003e` |\n| [use_cudnn_on_gpu_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1ac0181cd1c99e758fff22f356f9c51f12)` = true` | `bool` |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1abafbedb30c29ed091ff37895bd8b6c6a)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Specify the data format of the input and output data. |\n| [Dilations](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a16869b39ea0a373acb40566ed4235eb1)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) 1-D tensor of length 4. |\n| [ExplicitPaddings](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a69865f8fd6ea1e16ccc3e4b794ed3b56)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. |\n| [UseCudnnOnGpu](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a6fb079456a188df93e329f61671ff674)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Defaults to true. |\n\nPublic attributes\n-----------------\n\n### data_format_\n\n```scdoc\nStringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = \"NHWC\"\n``` \n\n### dilations_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()\n``` \n\n### explicit_paddings_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}\n``` \n\n### use_cudnn_on_gpu_\n\n```scdoc\nbool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true\n``` \n\nPublic functions\n----------------\n\n### DataFormat\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(\n StringPiece x\n)\n``` \nSpecify the data format of the input and output data.\n\nWith the default format \"NHWC\", the data is stored in the order of: \\[batch, height, width, channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, channels, height, width\\].\n\nDefaults to \"NHWC\" \n\n### Dilations\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n1-D tensor of length 4.\n\nThe dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\nDefaults to \\[1, 1, 1, 1\\] \n\n### ExplicitPaddings\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \nIf `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts.\n\nFor the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n\nDefaults to \\[\\] \n\n### UseCudnnOnGpu\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(\n bool x\n)\n``` \nDefaults to true."]]