Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
fluxo tensor:: ops:: FracionárioAvgPool
#include <nn_ops.h>
Executa o agrupamento médio fracionário na entrada.
Resumo
O pooling médio fracionário é semelhante ao pooling máximo fracionário na etapa de geração da região de pooling. A única diferença é que após a geração das regiões de pooling, uma operação média é executada em vez de uma operação máxima em cada região de pooling.
Argumentos:
- escopo: um objeto Escopo
- valor: 4-D com forma
[batch, height, width, channels]
. - pooling_ratio: taxa de agrupamento para cada dimensão de
value
, atualmente suporta apenas dimensões de linha e coluna e deve ser >= 1,0. Por exemplo, uma proporção de agrupamento válida se parece com [1,0, 1,44, 1,73, 1,0]. O primeiro e o último elementos devem ser 1,0 porque não permitimos agrupamento em dimensões de lote e canais. 1,44 e 1,73 são a proporção de agrupamento nas dimensões de altura e largura, respectivamente.
Atributos opcionais (veja Attrs
):
- pseudo_random: Quando definido como True, gera a sequência de pooling de forma pseudoaleatória, caso contrário, de forma aleatória. Verifique o artigo Benjamin Graham, Fractional Max-Pooling para ver a diferença entre pseudoaleatório e aleatório.
- sobreposição: quando definido como True, significa que, ao agrupar, os valores no limite das células adjacentes do agrupamento são usados por ambas as células. Por exemplo:
index 0 1 2 3 4
value 20 5 16 3 7
Se a sequência de agrupamento for [0, 2, 4], então 16, no índice 2, será usado duas vezes. O resultado seria [41/3, 26/3] para agrupamento médio fracionário.
- determinístico: quando definido como True, uma região de pooling fixa será usada ao iterar sobre um nó FractionalAvgPool no gráfico de computação. Usado principalmente em testes de unidade para tornar FractionalAvgPool determinístico.
- seed: Se seed ou seed2 forem definidos como diferentes de zero, o gerador de números aleatórios será propagado pela semente fornecida. Caso contrário, é semeado por uma semente aleatória.
- seed2: Uma segunda semente para evitar colisão de sementes.
Retorna:
- Saída
Output
: tensor de saída após agrupamento médio fracionário. -
Output
row_pooling_sequence: sequência de pooling de linhas, necessária para calcular o gradiente. -
Output
col_pooling_sequence: sequência de agrupamento de colunas, necessária para calcular o gradiente.
Atributos públicos
Funções públicas
Funções estáticas públicas
Determinístico
Attrs Deterministic(
bool x
)
Sobreposição
Attrs Overlapping(
bool x
)
Pseudoaleatório
Attrs PseudoRandom(
bool x
)
Semente
Attrs Seed(
int64 x
)
Semente2
Attrs Seed2(
int64 x
)
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-26 UTC.
[null,null,["Última atualização 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::FractionalAvgPool Class Reference\n\ntensorflow::ops::FractionalAvgPool\n==================================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms fractional average pooling on the input.\n\nSummary\n-------\n\nFractional average pooling is similar to Fractional max pooling in the pooling region generation step. The only difference is that after pooling regions are generated, a mean operation is performed instead of a max operation in each pooling region.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- value: 4-D with shape `[batch, height, width, channels]`.\n- pooling_ratio: Pooling ratio for each dimension of `value`, currently only supports row and col dimension and should be \\\u003e= 1.0. For example, a valid pooling ratio looks like \\[1.0, 1.44, 1.73, 1.0\\]. The first and last elements must be 1.0 because we don't allow pooling on batch and channels dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions respectively.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs)):\n\n- pseudo_random: When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for difference between pseudorandom and random.\n- overlapping: When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. For example:\n\n\u003cbr /\u003e\n\n\n`index 0 1 2 3 4`\n\n\n`value 20 5 16 3 7`\n\nIf the pooling sequence is \\[0, 2, 4\\], then 16, at index 2 will be used twice. The result would be \\[41/3, 26/3\\] for fractional avg pooling.\n\n- deterministic: When set to True, a fixed pooling region will be used when iterating over a [FractionalAvgPool](/versions/r2.0/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) node in the computation graph. Mainly used in unit test to make [FractionalAvgPool](/versions/r2.0/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) deterministic.\n- seed: If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: An second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output: output tensor after fractional avg pooling.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) row_pooling_sequence: row pooling sequence, needed to calculate gradient.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) col_pooling_sequence: column pooling sequence, needed to calculate gradient.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FractionalAvgPool](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a83af6f6e93dbac2bf42ad6afc05d2a86)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value, const gtl::ArraySlice\u003c float \u003e & pooling_ratio)` ||\n| [FractionalAvgPool](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1afe59c1134290e6cfe190960e53e836ed)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value, const gtl::ArraySlice\u003c float \u003e & pooling_ratio, const `[FractionalAvgPool::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [col_pooling_sequence](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a253a9b7940b383f04c70aa5254f52995) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a8b1bbb7c981afe922b39753597ab754b) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a72c1fe35152d17096cfcd5ca3d626e24) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [row_pooling_sequence](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1aef40ec50b456803bb75a8474cdc29fcb) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [Deterministic](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a286c7e7d0ea4b667eb0fca780f6c8fd8)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [Overlapping](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a561400c14f7e0877122cf0faad67b785)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [PseudoRandom](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1aaeb0a37c716692070fa056b6f164adab)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [Seed](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a691079eab5c004dc817e928c12380fe5)`(int64 x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1aba6caf6e7f50e68e728b8ac9357b9353)`(int64 x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::FractionalAvgPool::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs) | Optional attribute setters for [FractionalAvgPool](/versions/r2.0/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool). |\n\nPublic attributes\n-----------------\n\n### col_pooling_sequence\n\n```scdoc\n::tensorflow::Output col_pooling_sequence\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\n### row_pooling_sequence\n\n```scdoc\n::tensorflow::Output row_pooling_sequence\n``` \n\nPublic functions\n----------------\n\n### FractionalAvgPool\n\n```gdscript\n FractionalAvgPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input value,\n const gtl::ArraySlice\u003c float \u003e & pooling_ratio\n)\n``` \n\n### FractionalAvgPool\n\n```gdscript\n FractionalAvgPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input value,\n const gtl::ArraySlice\u003c float \u003e & pooling_ratio,\n const FractionalAvgPool::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Deterministic\n\n```text\nAttrs Deterministic(\n bool x\n)\n``` \n\n### Overlapping\n\n```text\nAttrs Overlapping(\n bool x\n)\n``` \n\n### PseudoRandom\n\n```text\nAttrs PseudoRandom(\n bool x\n)\n``` \n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]