Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: IdentitasN
#include <array_ops.h>
Mengembalikan daftar tensor dengan bentuk dan konten yang sama dengan input.
Ringkasan
tensor.
Operasi ini dapat digunakan untuk mengganti gradien untuk fungsi yang rumit. Misalnya, y = f(x) dan kita ingin menerapkan fungsi khusus g untuk backprop sehingga dx = g(dy). Dengan Python,
with tf.get_default_graph().gradient_override_map(
{'IdentityN': 'OverrideGradientWithG'}):
y, _ = identity_n([f(x), x])
.RegisterGradient('OverrideGradientWithG')
def ApplyG(op, dy, _):
return [None, g(dy)] # Do not backprop to f(x).
Argumen:
Pengembalian:
-
OutputList
: Tensor keluaran.
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::IdentityN Class Reference\n\ntensorflow::ops::IdentityN\n==========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a list of tensors with the same shapes and contents as the input.\n\nSummary\n-------\n\ntensors.\n\nThis op can be used to override the gradient for complicated functions. For example, suppose y = f(x) and we wish to apply a custom function g for backprop such that dx = g(dy). In Python,\n\n\n```scdoc\nwith tf.get_default_graph().gradient_override_map(\n {'IdentityN': 'OverrideGradientWithG'}):\n y, _ = identity_n([f(x), x])\n```\n\n\u003cbr /\u003e\n\n\n```gas\n.RegisterGradient('OverrideGradientWithG')\ndef ApplyG(op, dy, _):\n return [None, g(dy)] # Do not backprop to f(x).\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList`: The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [IdentityN](#classtensorflow_1_1ops_1_1_identity_n_1a6643cba5b78cac36cc7b45f5e6ac03be)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r2.0/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` input)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_identity_n_1aab1042fbd2a1eb89667e580c77cda3db) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_identity_n_1adcada4788c180a31ade058caf543a8ce) | `::`[tensorflow::OutputList](/versions/r2.0/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operator[]](#classtensorflow_1_1ops_1_1_identity_n_1ab03e879700560bb229b66d06d1bccc71)`(size_t index) const ` | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::OutputList output\n``` \n\nPublic functions\n----------------\n\n### IdentityN\n\n```gdscript\n IdentityN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList input\n)\n``` \n\n### operator\\[\\]\n\n```gdscript\n::tensorflow::Output operator[](\n size_t index\n) const \n```"]]