Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: JarangMatMul
#include <math_ops.h>
Kalikan matriks "a" dengan matriks "b".
Ringkasan
Inputnya harus berupa matriks dua dimensi dan dimensi dalam "a" harus sesuai dengan dimensi luar "b". Baik "a" maupun "b" harus berupa Tensor
, bukan SparseTensor
. Operasi ini dioptimalkan untuk kasus di mana setidaknya salah satu dari "a" atau "b" jarang, dalam arti bahwa keduanya memiliki sebagian besar nilai nol. Titik impas untuk menggunakan ini versus perkalian matriks padat pada satu platform adalah 30% nilai nol dalam matriks renggang.
Komputasi gradien pada operasi ini hanya akan memanfaatkan ketersebaran pada gradien masukan jika gradien tersebut berasal dari Relu .
Argumen:
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
AIsSparse
Attrs AIsSparse(
bool x
)
BIsSparse
Attrs BIsSparse(
bool x
)
Mengubah urutanA
Attrs TransposeA(
bool x
)
TransposB
Attrs TransposeB(
bool x
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::SparseMatMul Class Reference\n\ntensorflow::ops::SparseMatMul\n=============================\n\n`#include \u003cmath_ops.h\u003e`\n\n[Multiply](/versions/r2.0/api_docs/cc/class/tensorflow/ops/multiply#classtensorflow_1_1ops_1_1_multiply) matrix \"a\" by matrix \"b\".\n\nSummary\n-------\n\nThe inputs must be two-dimensional matrices and the inner dimension of \"a\" must match the outer dimension of \"b\". Both \"a\" and \"b\" must be [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor)s not `SparseTensor`s. This op is optimized for the case where at least one of \"a\" or \"b\" is sparse, in the sense that they have a large proportion of zero values. The breakeven for using this versus a dense matrix multiply on one platform was 30% zero values in the sparse matrix.\n\nThe gradient computation of this operation will only take advantage of sparsity in the input gradient when that gradient comes from a [Relu](/versions/r2.0/api_docs/cc/class/tensorflow/ops/relu#classtensorflow_1_1ops_1_1_relu).\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The product tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseMatMul](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1a44ec3b9c8a4a6c27ec1e5defa921a8c2)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b)` ||\n| [SparseMatMul](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1a29e8ca18f70b1f18d2d5931606fa5108)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b, const `[SparseMatMul::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/sparse-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_mat_mul_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1af4bedc3c3ba71553d0c1e30513898430) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [product](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1a9b708969f18250faa3e40edad285ae45) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1ae461c34d275e4d996e21af14b8870531)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1a7e6d0d764e73510a120ea967abaf9250)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1a3fee7729e51d2b640d654a25a84f0185)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|\n| [AIsSparse](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1acaa26e8e9d1e5854dcfef57dcb4efd5b)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/sparse-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_mat_mul_1_1_attrs) |\n| [BIsSparse](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1aaf87a4805b8269233969a514bea852ef)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/sparse-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_mat_mul_1_1_attrs) |\n| [TransposeA](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1a41b864162f17688227aa34ee4d8021b2)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/sparse-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_mat_mul_1_1_attrs) |\n| [TransposeB](#classtensorflow_1_1ops_1_1_sparse_mat_mul_1af58949ad4394aa0ba7869e65ba742487)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/sparse-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_mat_mul_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseMatMul::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/sparse-mat-mul/attrs) | Optional attribute setters for [SparseMatMul](/versions/r2.0/api_docs/cc/class/tensorflow/ops/sparse-mat-mul#classtensorflow_1_1ops_1_1_sparse_mat_mul). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### product\n\n```text\n::tensorflow::Output product\n``` \n\nPublic functions\n----------------\n\n### SparseMatMul\n\n```gdscript\n SparseMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b\n)\n``` \n\n### SparseMatMul\n\n```gdscript\n SparseMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b,\n const SparseMatMul::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### AIsSparse\n\n```text\nAttrs AIsSparse(\n bool x\n)\n``` \n\n### BIsSparse\n\n```text\nAttrs BIsSparse(\n bool x\n)\n``` \n\n### TransposeA\n\n```text\nAttrs TransposeA(\n bool x\n)\n``` \n\n### TransposeB\n\n```text\nAttrs TransposeB(\n bool x\n)\n```"]]