Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: StringNGrams
#include <string_ops.h>
Crea ngrams a partir de datos de cadenas irregulares.
Resumen
Esta operación acepta un tensor irregular con 1 dimensión irregular que contiene solo cadenas y genera un tensor irregular con 1 dimensión irregular que contiene ngrams de esa cadena, unidos a lo largo del eje más interno.
Argumentos:
- alcance: un objeto de alcance
- datos: el tensor de valores del tensor de cadena irregular del que se forman ngramas. Debe ser un tensor de cadena 1D.
- data_splits: el tensor de divisiones del tensor de cadena irregular para hacer ngrams.
- separador: la cadena que se agregará entre los elementos del token. Utilice "" para ningún separador.
- ngram_widths: Los tamaños de los ngrams a crear.
- left_pad: la cadena que se utilizará para rellenar el lado izquierdo de la secuencia ngram. Solo se usa si pad_width! = 0.
- right_pad: La cadena que se utilizará para rellenar el lado derecho de la secuencia ngram. Solo se usa si pad_width! = 0.
- pad_width: el número de elementos de relleno para agregar a cada lado de cada secuencia. Tenga en cuenta que el relleno nunca será mayor que 'ngram_widths'-1 independientemente de este valor. Si
pad_width=-1
, agregue max(ngram_widths)-1
elementos.
Devoluciones:
- Ngrams de
Output
: el tensor de valores del tensor irregular de ngrams de salida. -
Output
ngrams_splits: el tensor de divisiones del tensor irregular de ngrams de salida.
Atributos públicos
Funciones publicas
StringNGrams
StringNGrams(
const ::tensorflow::Scope & scope,
::tensorflow::Input data,
::tensorflow::Input data_splits,
StringPiece separator,
const gtl::ArraySlice< int > & ngram_widths,
StringPiece left_pad,
StringPiece right_pad,
int64 pad_width,
bool preserve_short_sequences
)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-04-20 (UTC)
[null,null,["Última actualización: 2020-04-20 (UTC)"],[],[],null,["# tensorflow::ops::StringNGrams Class Reference\n\ntensorflow::ops::StringNGrams\n=============================\n\n`#include \u003cstring_ops.h\u003e`\n\nCreates ngrams from ragged string data.\n\nSummary\n-------\n\nThis op accepts a ragged tensor with 1 ragged dimension containing only strings and outputs a ragged tensor with 1 ragged dimension containing ngrams of that string, joined along the innermost axis.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- data: The values tensor of the ragged string tensor to make ngrams out of. Must be a 1D string tensor.\n- data_splits: The splits tensor of the ragged string tensor to make ngrams out of.\n- separator: The string to append between elements of the token. Use \"\" for no separator.\n- ngram_widths: The sizes of the ngrams to create.\n- left_pad: The string to use to pad the left side of the ngram sequence. Only used if pad_width != 0.\n- right_pad: The string to use to pad the right side of the ngram sequence. Only used if pad_width != 0.\n- pad_width: The number of padding elements to add to each side of each sequence. Note that padding will never be greater than 'ngram_widths'-1 regardless of this value. If `pad_width=-1`, then add `max(ngram_widths)-1` elements.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) ngrams: The values tensor of the output ngrams ragged tensor.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) ngrams_splits: The splits tensor of the output ngrams ragged tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [StringNGrams](#classtensorflow_1_1ops_1_1_string_n_grams_1a52a1f08705af6ba58d3607b809b3f835)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data_splits, StringPiece separator, const gtl::ArraySlice\u003c int \u003e & ngram_widths, StringPiece left_pad, StringPiece right_pad, int64 pad_width, bool preserve_short_sequences)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [ngrams](#classtensorflow_1_1ops_1_1_string_n_grams_1a447bd501492adc42e453473dd818baf0) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [ngrams_splits](#classtensorflow_1_1ops_1_1_string_n_grams_1af326c6b4d4d0f53e7b7360546c807526) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_string_n_grams_1a96bbeebe04843441f8b36c587ed4f1c9) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### ngrams\n\n```text\n::tensorflow::Output ngrams\n``` \n\n### ngrams_splits\n\n```scdoc\n::tensorflow::Output ngrams_splits\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### StringNGrams\n\n```gdscript\n StringNGrams(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input data,\n ::tensorflow::Input data_splits,\n StringPiece separator,\n const gtl::ArraySlice\u003c int \u003e & ngram_widths,\n StringPiece left_pad,\n StringPiece right_pad,\n int64 pad_width,\n bool preserve_short_sequences\n)\n```"]]