Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::ConjugateTranspose
#include <array_ops.h>
Shuffle dimensions of x according to a permutation and conjugate the result.
Summary
The output y
has the same rank as x
. The shapes of x
and y
satisfy: y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]
y[i,j,k,...,s,t,u] == conj(x[perm[i], perm[j], perm[k],...,perm[s], perm[t], perm[u]])
Args:
Returns:
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::ConjugateTranspose Class Reference\n\ntensorflow::ops::ConjugateTranspose\n===================================\n\n`#include \u003carray_ops.h\u003e`\n\nShuffle dimensions of x according to a permutation and conjugate the result.\n\nSummary\n-------\n\nThe output `y` has the same rank as `x`. The shapes of `x` and `y` satisfy: `y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]``y[i,j,k,...,s,t,u] == conj(x[perm[i], perm[j], perm[k],...,perm[s], perm[t], perm[u]])`\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ConjugateTranspose](#classtensorflow_1_1ops_1_1_conjugate_transpose_1a4a5368d3cec175ad261612c95e8da6d3)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` perm)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conjugate_transpose_1aa4e3004e201a961572c3999a46990f0b) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_conjugate_transpose_1a804efbc2f1fec9fee64ccac9402bbbdd) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conjugate_transpose_1a3829d54bcdcdc65f244e364383c52a12)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conjugate_transpose_1af0205b3679ff8def147607935343b1c1)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conjugate_transpose_1aec6563c894874b88ae5b51e91f251ef5)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### ConjugateTranspose\n\n```gdscript\n ConjugateTranspose(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input perm\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]