tensorflow::ops::ResourceApplyRMSProp

#include <training_ops.h>

Update '*var' according to the RMSProp algorithm.

Note that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom

Args:

  • scope: A Scope object
  • var: Should be from a Variable().
  • ms: Should be from a Variable().
  • mom: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • rho: Decay rate. Must be a scalar.
  • epsilon: Ridge term. Must be a scalar.
  • grad: The gradient.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UseLocking(bool x)

Structs

tensorflow::ops::ResourceApplyRMSProp::Attrs

Optional attribute setters for ResourceApplyRMSProp.

Public attributes

operation

Operation operation

Public functions

ResourceApplyRMSProp

 ResourceApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ResourceApplyRMSProp

 ResourceApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ResourceApplyRMSProp::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)