Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::Cos
#include <math_ops.h>
Computes cos of x element-wise.
Summary
Given an input tensor, this function computes cosine of every element in the tensor. Input range is (-inf, inf)
and output range is [-1,1]
. If input lies outside the boundary, nan
is returned.
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.cos(x) ==> [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan]
Args:
Returns:
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::Cos Class Reference\n\ntensorflow::ops::Cos\n====================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes cos of x element-wise.\n\nSummary\n-------\n\nGiven an input tensor, this function computes cosine of every element in the tensor. [Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input) range is `(-inf, inf)` and output range is `[-1,1]`. If input lies outside the boundary, `nan` is returned.\n\n\n```gdscript\n x = tf.constant([-float(\"inf\"), -9, -0.5, 1, 1.2, 200, 10000, float(\"inf\")])\n tf.math.cos(x) ==\u003e [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan]\n \n```\n\n\u003cbr /\u003e\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Cos](#classtensorflow_1_1ops_1_1_cos_1a4ce1eaf028ad3e711a91dcd15b0c507f)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_cos_1a4ffd18df457c2a2c8275cf2425e489e9) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_cos_1af2e653ddc7ca687b13e27ec5529f316a) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_cos_1a134873100b8bd65d802cfbfad2ad260c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_cos_1a198fd4284911414e52ceb9b8f884ea58)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_cos_1a2a0d44fe189b87af6d3f178798ee084a)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### Cos\n\n```gdscript\n Cos(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]